An unusual atmospheric vortex street

Abstract

Atmospheric vortex streets quite often form in the wake of tall islands in the marine atmospheric boundary layer. Most satellite pictures of this phenomenon show that two rows of staggered, counter-rotating vortices are aligned more or less in a straight line downstream of the islands, like Kármán vortex streets behind cylindrical obstacles. In this paper however, an unusual downstream behaviour of an atmospheric vortex street in the wake of Heard Island is discussed, where there is a sudden change in orientation of the vortices downwind of the island. The reason for this development can be traced to a special synoptic weather situation.

This is a preview of subscription content, log in to check access.

Fig. 1

Source: Jeff Schmaltz, MODIS Rapid Response Team, NASA/GSFC

Fig. 2

Source: Heinze et al. [9]

Fig. 3

Source: NOAA/ESRL Physical Science Division

Fig. 4
Fig. 5

Source: Jeff Schmaltz, MODIS Rapid Response Team, NASA/GSFC

Fig. 6

Source: NOAA/ESRL Physical Science Division

Fig. 7

References

  1. 1.

    Birkhoff G, Zarantonella E (1957) Jets, wakes and cavities, vol 2. Academic, New York

    Google Scholar 

  2. 2.

    Chopra KP (1973) Atmospheric and oceanic flow problems introduced by islands. Adv Geophys 16:297–421

    Article  Google Scholar 

  3. 3.

    Chopra K, Hubert L (1965) Mesoscale eddies in wake of islands. J Atmos Sci 22:652–657. https://doi.org/10.1175/1520-0469(1965)022%3c0652:MEIWOI%3e2.0.CO;2

    Article  Google Scholar 

  4. 4.

    Couvelard X, Caldeira R, Araujo I, Tomé R (2012) Wind mediated vorticity-generation and eddy confinement, leeward of the Madeira island: 2008 numerical case study. Dyn Atmos Oceans 58:128–149. https://doi.org/10.1016/j.dynatmoce.2012.09.005

    Article  Google Scholar 

  5. 5.

    Epifanio C, Durran D (2002) Lee-vortex formation in free-slip stratified flow over ridges. Part I: comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J Atmos Sci 59:1153–1165. https://doi.org/10.1175/1520-0469(2002)059%3c1153:LVFIFS%3e2.0.CO;2

    Article  Google Scholar 

  6. 6.

    Epifanio C, Durran D (2002) Lee-vortex formation in free-slip stratified flow over ridges. Part II: mechanisms of vorticity and PV production in nonlinear viscous wakes. J Atmos Sci 59:1166–1181. https://doi.org/10.1175/1520-0469(2002)059%3c1166:LVFIFS%3e2.0.CO;2

    Article  Google Scholar 

  7. 7.

    Etling D (1989) On atmospheric vortex streets in the wake of large islands. Meteorol Atmos Phys 41:157–164. https://doi.org/10.1007/BF01043134

    Article  Google Scholar 

  8. 8.

    Grubisic V, Sachsperger J, Caldeira RMA (2015) Atmospheric wake of madeira: first aerial observations and numerical simulations. J Atmos Sci 72:4755–4777. https://doi.org/10.1175/JAS-D-14-0251.1

    Article  Google Scholar 

  9. 9.

    Heinze R, Raasch S, Etling D (2012) The structure of Kármán vortex streets in the atmospheric boundary layer derived from large eddy simulation. Meteorol Z 21:221–237. https://doi.org/10.1127/0941-2948/2012/0313

    Article  Google Scholar 

  10. 10.

    Hubert L, Krueger A (1962) Satellite pictures of mesoscale eddies. Mon Weather Rev 90:457–463. https://doi.org/10.1175/1520-0493(1962)090%3c0457:SPOME%3e2.0.CO;2

    Article  Google Scholar 

  11. 11.

    Ito J, Niino H (2016) Atmospheric Kármán vortex shedding from Jeju Island, East China Sea: a numerical study. Mon Weather Rev 144:139–148. https://doi.org/10.1175/MWR-D-14-004606.s1

    Article  Google Scholar 

  12. 12.

    Monkewitz PA (1988) The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys Fluids 31:999–1006. https://doi.org/10.1063/1.866720

    Article  Google Scholar 

  13. 13.

    Nunalee CG, Basu S (2014) On the periodicity of atmospheric von Kármán vortex streets. Environ Fluid Mech 14:1335–1355. https://doi.org/10.1007/s10652-014-9340-9

    Article  Google Scholar 

  14. 14.

    Ponta FL, Aref H (2004) Strouhal–Reynolds number relationship for vortex streets. Phys Rev Lett 93:84501. https://doi.org/10.1103/PhysRevLett.93.084501

    Article  Google Scholar 

  15. 15.

    Rotunno R, Grubišic V, Smolarkiewicz P (1999) Vorticity and potential vorticity in mountain wakes. J Atmos Sci 56:2796–2810. https://doi.org/10.1175/1520-0469(1999)056%3c2796:VAPVIM%3e2.0.CO;2

    Article  Google Scholar 

  16. 16.

    Schär C, Durran DR (1997) Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J Atmos Sci 54:534–554. https://doi.org/10.1175/1520-0469(1997)054%3c0534:VFAVSI%3e2.0.CO;2

    Article  Google Scholar 

  17. 17.

    Schär C, Smith RB (1993) Shallow-water flow past isolated topography. Part I: vorticity production and wake formation. J Atmos Sci 50:1373–1400. https://doi.org/10.1175/1520-0469(1993)050%3c1373:SWFPIT%3e2.0.CO;2

    Article  Google Scholar 

  18. 18.

    Schär C, Smith RB (1993) Shallow-water flow past isolated topography. Part II: transition to vortex shedding. J Atmos Sci 50:1401–1412. https://doi.org/10.1175/1520-0469(1993)050%3c1401:SWFPIT%3e2.0.CO;2

    Article  Google Scholar 

  19. 19.

    Scorer RS (1986) Cloud investigation by satellite. Wiley, London

    Google Scholar 

  20. 20.

    Smolarkiewicz PK, Rotunno R (1989) Low Froude number flow past three-dimensional obstacles. Part 1: baroclinically generated lee vortices. J Atmos Sci 46:1154–1164. https://doi.org/10.1175/1520-0469(1989)046%3c1154:LFNFPT%3e2.0.CO;2

    Article  Google Scholar 

  21. 21.

    Snyder W, Hunt J, Lee J, Castro I, Lawson R, Eskridge R, Thompson R, Ogawa Y (1985) The structure of strongly stratified flow over hills: dividing-streamline concept. J Fluid Mech 152:249–288. https://doi.org/10.1017/S0022112085000684

    Article  Google Scholar 

  22. 22.

    von Kármán T, Rubach H (1912) Über den Mechanismus des Flüssigkeits und Luftwiderstandes. Z Phys 13:49–59

    Google Scholar 

  23. 23.

    Wille R (1960) Kármán vortex street. Adv Appl Mech 6:273–287. https://doi.org/10.1016/S0065-2156(08)70113-3

    Article  Google Scholar 

  24. 24.

    Young G, Zawislak J (2006) An observational study of vortex spacing in island wake vortex streets. Mon Weather Rev 134:2285–2294. https://doi.org/10.1175/MWR3186.1

    Article  Google Scholar 

Download references

Acknowledgements

Images from the NCEP Reanalysis described in “Kalnay, E. and Coauthors, 1996: The NCEP/NCAR Reanalysis 40-year Project. Bull. Amer. Meteor. Soc., 77, 437–471.” are provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from their Web site at http://www.esrl.noaa.gov/psd/.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dieter Etling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etling, D. An unusual atmospheric vortex street. Environ Fluid Mech 19, 1379–1391 (2019). https://doi.org/10.1007/s10652-018-09654-w

Download citation

Keywords

  • Island wakes
  • Marine boundary layer
  • Vortex street
  • Kármán vortex street