Advertisement

Environmental Fluid Mechanics

, Volume 18, Issue 2, pp 383–394 | Cite as

Shoaling internal waves may reduce gravity current transport

  • Charlie A. R. Hogg
  • Galen C. Egan
  • Nicholas T. Ouellette
  • Jeffrey R. Koseff
Original Article

Abstract

Gravity currents descending along slopes have typically been studied in quiescent environments, despite the fact that in many geophysical settings there is significant externally driven motion. Here we investigate how the head of a gravity current is influenced by interfacial internal waves at the pycnocline of a two-layer ambient water column. Our experimental measurements show that larger amplitude internal waves, interacting with the gravity current, reduce both the mass transport by the gravity current and its thickness. These results suggest that the ambient internal wave field should be considered when estimating transport by gravity currents in geophysical settings with strong internal waves, such as lakes and the coastal ocean.

Keywords

Gravity currents Internal waves Desalination Coastal ocean processes Limnology River inflows 

Notes

Acknowledgements

We gratefully acknowledge assistance in the lab from Valerie Pietraz, Bill Sabala and Michelle Dutt. This work was supported by National Science Foundation Grant No. OCE—1634389 and the Stanford Woods Institute for the Environment.

References

  1. 1.
    Aghsaee P, Boegman L, Lamb KG (2010) Breaking of shoaling internal solitary waves. J Fluid Mech 659:289–317.  https://doi.org/10.1017/S002211201000248X CrossRefGoogle Scholar
  2. 2.
    Arthur RS, Fringer OB (2014) The dynamics of breaking internal solitary waves on slopes. J Fluid Mech 761:360–398.  https://doi.org/10.1017/jfm.2014.641 CrossRefGoogle Scholar
  3. 3.
    Baines PG (2001) Mixing in flows down gentle slopes into stratified environments. J Fluid Mech 443:237–270CrossRefGoogle Scholar
  4. 4.
    Baines PG (2008) Mixing in downslope flows in the ocean—plumes versus gravity currents. Atmos Ocean 46(4):405–419.  https://doi.org/10.3137/AO925.2008 CrossRefGoogle Scholar
  5. 5.
    Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50(5):1620–1637.  https://doi.org/10.4319/lo.2005.50.5.1620 CrossRefGoogle Scholar
  6. 6.
    Bourgault D, Kelley DE (2007) On the reflectance of uniform slopes for normally incident interfacial solitary waves. J Phys Oceanogr 37(5):1156–1162.  https://doi.org/10.1175/JPO3059.1 CrossRefGoogle Scholar
  7. 7.
    Bourgault D, Blokhina MD, Mirshak R, Kelley DE (2007) Evolution of a shoaling internal solitary wavetrain. Geophys Res Lett 34(3):L03,601.  https://doi.org/10.1029/2006GL028462 CrossRefGoogle Scholar
  8. 8.
    Cenedese C, Adduce C (2010) A new parameterization for entrainment in overflows. J Phys Oceanogr 40(8):1835–1850.  https://doi.org/10.1175/2010JPO4374.1 CrossRefGoogle Scholar
  9. 9.
    Cortés A, Fleenor WE, Wells MG, de Vicente I, Rueda FJ (2014) Pathways of river water to the surface layers of stratified reservoirs. Limnol Oceanogr 59(1):233–250CrossRefGoogle Scholar
  10. 10.
    Crimaldi J, Koseff J (2001) High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exp Fluids 31(1):90–102CrossRefGoogle Scholar
  11. 11.
    Dallimore CJ, Imberger J, Ishikawa T (2001) Entrainment and turbulence in saline underflow in Lake Ogawara. J Hydraul Eng 127:937–948CrossRefGoogle Scholar
  12. 12.
    Davis KA, Monismith SG (2011) The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J Phys Oceanogr 41(11):2223–2241.  https://doi.org/10.1175/2011JPO4344.1 CrossRefGoogle Scholar
  13. 13.
    Ellison TH, Turner JS (1959) Turbulent entrainment in stratified flows. J Fluid Mech 6(03):423–448CrossRefGoogle Scholar
  14. 14.
    Fernandez RL, Imberger J (2006) Bed roughness induced entrainment in a high Richardson number underflow. J Hydraul Res 44(6):725–738.  https://doi.org/10.1080/00221686.2006.9521724 CrossRefGoogle Scholar
  15. 15.
    Fernández-Torquemada Y, Gónzalez-Correa JM, Loya A, Ferrero LM, Díaz-Valdés M, Sánchez-Lizaso JL (2009) Dispersion of brine discharge from seawater reverse osmosis desalination plants. Desalin Water Treat 5(1–3):137–145CrossRefGoogle Scholar
  16. 16.
    Fischer HB, Smith RD (1983) Observations of transport to surface waters from a plunging inflow to Lake Mead. Limnol Oceanogr 28(2):258–272.  https://doi.org/10.4319/lo.1983.28.2.0258 CrossRefGoogle Scholar
  17. 17.
    Hebbert B, Imberger J, Loh I (1979) Collie river underflow into the Wellington reservoir. J Hydraul Div ASCE 105:533–545Google Scholar
  18. 18.
    Helfrich KR (1992) Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech 243:133–154.  https://doi.org/10.1017/S0022112092002660 CrossRefGoogle Scholar
  19. 19.
    Helfrich KR, Melville WK (1986) On long nonlinear internal waves over slope-shelf topography. J Fluid Mech 167:285–308.  https://doi.org/10.1017/S0022112086002823 CrossRefGoogle Scholar
  20. 20.
    Hodges BR, Furnans JE, Kulis PS (2011) Thin-layer gravity current with implications for desalination brine disposal. J Hydraul Eng 137(3):356–371.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000310 CrossRefGoogle Scholar
  21. 21.
    Hogg C (2014) The flow of rivers into lakes: experiments and models. Ph.D. thesis, Cambridge University  https://doi.org/10.17863/CAM.32
  22. 22.
    Hogg CAR, Egan GC, Ouellette NT, Koseff JR (2016) The influence of a shoaling internal gravity wave on a dense gravity current. In: 8th International symposium on stratified flows, San Diego, CA, USAGoogle Scholar
  23. 23.
    Hogg CAR, Dalziel SB, Huppert HE, Imberger J (2017) Inclined gravity currents filling basins: the impact of peeling detrainment on transport and vertical structure. J Fluid Mech 820:400–423.  https://doi.org/10.1017/jfm.2017.196 CrossRefGoogle Scholar
  24. 24.
    Imberger J, Hamblin PF (1982) Dynamics of lakes, reservoirs, and cooling ponds. Annu Rev Fluid Mech 14(1):153–187.  https://doi.org/10.1146/annurev.fl.14.010182.001101 CrossRefGoogle Scholar
  25. 25.
    Jenkins S, Paduan J, Roberts P, Schlenk D, Weis J (2012) Management of brine discharges to coastal waters recommendations of a science advisory panel. Southern California coastal water research project, Costa Mesa, CAGoogle Scholar
  26. 26.
    Kvitek RG, Conlan KE, Iampietro PJ (1998) Black pools of death: hypoxic, brine-filled ice gouge depressions become lethal traps for benthic organisms in a shallow Arctic embayment. Mar Ecol Prog Ser 162:1–10.  https://doi.org/10.3354/meps162001 CrossRefGoogle Scholar
  27. 27.
    MacIntyre S, Flynn KM, Jellison R, Romero JR (1999) Boundary mixing and nutrient fluxes in Mono Lake, California. Limnol Oceanogr 44(3):512–529.  https://doi.org/10.4319/lo.1999.44.3.0512 CrossRefGoogle Scholar
  28. 28.
    Marti C, Antenucci J, Luketina D, Okely P, Imberger J (2011) Near-field dilution characteristics of a negatively buoyant hypersaline jet generated by a desalination plant. J Hydraul Eng 137(1):57–65.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000275 CrossRefGoogle Scholar
  29. 29.
    Marti CL, Imberger J (2007) Exchange between littoral and pelagic waters in a stratified lake due to wind-induced motions: Lake Kinneret, Israel. Hydrobiologia 603(1):25–51.  https://doi.org/10.1007/s10750-007-9243-6 CrossRefGoogle Scholar
  30. 30.
    Masunaga E, Fringer OB, Yamazaki H (2015) An observational and numerical study of river plume dynamics in Otsuchi Bay, Japan. J Oceanogr 72(1):3–21.  https://doi.org/10.1007/s10872-015-0324-2 CrossRefGoogle Scholar
  31. 31.
    Meiburg E, Kneller B (2010) Turbidity currents and their deposits. Annu Rev Fluid Mech 42:135–156.  https://doi.org/10.1146/annurev-fluid-121108-145618 CrossRefGoogle Scholar
  32. 32.
    Michallet H, Ivey GN (1999) Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res Oceans 104(C6):13,467–13,477.  https://doi.org/10.1029/1999JC900037 CrossRefGoogle Scholar
  33. 33.
    Monaghan JJ (2007) Gravity current interaction with interfaces. Annu Rev Fluid Mech 39(1):245–261.  https://doi.org/10.1146/annurev.fluid.39.050905.110218 CrossRefGoogle Scholar
  34. 34.
    Monaghan JJ, RaF Cas, Kos AM, Hallworth M (1999) Gravity currents descending a ramp in a stratified tank. J Fluid Mech 379:39–69.  https://doi.org/10.1017/S0022112098003280 CrossRefGoogle Scholar
  35. 35.
    Moore C, Koseff JR, Hult EL (2016) Characteristics of bolus formation and propogation from breaking internal waves on shelf slopes. J Fluid Mech 791:260–283CrossRefGoogle Scholar
  36. 36.
    Peacock T, Mercier MJ, Didelle H, Viboud S, Dauxois T (2009) A laboratory study of low-mode internal tide scattering by finite-amplitude topography. Phys Fluids 21(12):121,702.  https://doi.org/10.1063/1.3267096 CrossRefGoogle Scholar
  37. 37.
    Pineda J (1994) Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J Mar Res 52(3):427–458.  https://doi.org/10.1357/0022240943077046 CrossRefGoogle Scholar
  38. 38.
    Robinson TO, Eames I, Simons R (2013) Dense gravity currents moving beneath progressive free-surface water waves. J Fluid Mech 725:588–610.  https://doi.org/10.1017/jfm.2013.112 CrossRefGoogle Scholar
  39. 39.
    Rueda FJ, Fleenor WE, de Vicente I (2007) Pathways of river nutrients towards the euphotic zone in a deep-reservoir of small size: uncertainty analysis. Ecol Model 202(3–4):345–361.  https://doi.org/10.1016/j.ecolmodel.2006.11.006 CrossRefGoogle Scholar
  40. 40.
    Samothrakis P, Cotel AJ (2006) Propagation of a gravity current in a two-layer stratified environment. J Geophys Res Oceans.  https://doi.org/10.1029/2005JC003125 Google Scholar
  41. 41.
    Simpson JE (1982) Gravity currents in the laboratory, atmosphere, and ocean. Annu Rev Fluid Mech 14(1):213–234.  https://doi.org/10.1146/annurev.fl.14.010182.001241 CrossRefGoogle Scholar
  42. 42.
    Toole JM, Schmitt RW, Polzin KL (1994) Estimates of diapycnal mixing in the abyssal ocean. Science 264(5162):1120–1123.  https://doi.org/10.1126/science.264.5162.1120 CrossRefGoogle Scholar
  43. 43.
    Turner JS (1986) Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J Fluid Mech 173:431–471.  https://doi.org/10.1017/S0022112086001222 CrossRefGoogle Scholar
  44. 44.
    Venayagamoorthy S, Fringer O (2012) Examining breaking internal waves on a shelf slope using numerical simulations. Oceanography 25(2):132–139.  https://doi.org/10.5670/oceanog.2012.48 CrossRefGoogle Scholar
  45. 45.
    Venayagamoorthy SK, Fringer OB (2007) On the formation and propagation of nonlinear internal boluses across a shelf break. J Fluid Mech 577:137–159.  https://doi.org/10.1017/S0022112007004624 CrossRefGoogle Scholar
  46. 46.
    Walter RK, Woodson CB, Arthur RS, Fringer OB, Monismith SG (2012) Nearshore internal bores and turbulent mixing in southern Monterey Bay. J Geophys Res.  https://doi.org/10.1029/2012JC008115 Google Scholar
  47. 47.
    Walter RK, Woodson CB, Leary PR, Monismith SG (2014) Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J Geophys Res Oceans 119(6):3517–3534.  https://doi.org/10.1002/2014JC009998 CrossRefGoogle Scholar
  48. 48.
    Wells MG, Wettlaufer JS (2007) The long-term circulation driven by density currents in a two-layer stratified basin. J Fluid Mech 572:37–58.  https://doi.org/10.1017/S0022112006003478 CrossRefGoogle Scholar
  49. 49.
    Wong ABD, Griffiths RW, Hughes GO (2001) Shear layers driven by turbulent plumes. J Fluid Mech 434(1):209–241Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Bob and Norma Street Environmental Fluid Mechanics LaboratoryStanford UniversityStanfordUSA

Personalised recommendations