Skip to main content
Log in

Influence of a flooding event discharge on accretion in wetlands

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Flooding events in wetlands transport sediment particles landwards and can increase accretion in some areas of the wetland or resuspend the sediment in other areas. In this study a flooding event with different water discharges was analyzed in a laboratory simulated wetland to determine the effect stem density has on particle trapping. The discharge that entered the simulated wetland was a particle laden barotropic current that initially produced a pulse that traveled through the wetland. After the first pulse, a baroclinic current, with a different timescale to the initial pulse, developed. Three stem densities, along with the ‘without plant case’, were considered. A semi-empirical model was formulated to explain the propagation of the water pulse. The model predicted the velocity of the pulse dampening in the presence of the simulated vegetation, by using the roughness parameter that had been found to increase with stem density. The baroclinic current propagated at a lower velocity than the pulse did, and its velocity decreased with stem density. As less sediment was found in the wetland with denser canopies, this indicates that the presence of a canopy acts as a barrier to sediment transportation. Furthermore, a greater amount of sediment was deposited in regions at the foot of the denser vegetated wetland zone and the sediment deposition also increased with the water discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Adduce C, Sciortino G, Proietti S (2012) Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment. J Hydraul Eng 138:111–121

    Article  Google Scholar 

  3. Agrawal YC, Hanes DM (2015) The implications of laser-diffraction measurements of sediment distributions in a river to the potential use of acoustic backscatter for sediment measurements. Water Resour Res 51:8854–8867

    Article  Google Scholar 

  4. Augustin LN, Irish JL, Lynett P (2009) Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast Eng 56:332–340

    Article  Google Scholar 

  5. Blott SJ, Pye K (2012) Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59:2071–2096. doi:10.1111/j.1365-3091.2012.01335.x

    Article  Google Scholar 

  6. Bonnecaze R, Huppert H, Lister J (1993) Particle-driven gavity currents. J Fluid Mech 250:339–369

    Article  Google Scholar 

  7. Bouma TJ, van Duren LA, Temmerman S et al (2007) Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modeling experiments. Cont Shelf Res 27:1020–1045

    Article  Google Scholar 

  8. Çengel Y, Cimbala J (2006) Fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  9. Evans JH (1972) Dimensional analysis and the buckingham Pi theorem. Am J Phys 40:1815. doi:10.1119/1.1987069

    Article  Google Scholar 

  10. Ghisalberti M, Nepf HM (2002) Mixing layers and coherent structures in vegetated aquatic flows. 107

  11. Hatcher L, Hogg A, Woods A (2000) The effects of drag on turbulent gravity currents. J Fluid Mech 416:297–314

    Article  Google Scholar 

  12. Järvelä J (2005) Effect of submerged flexible vegetation on flow structure and resistance. J Hydrol 307:233–241. doi:10.1016/j.jhydrol.2004.10.013

    Article  Google Scholar 

  13. Kirwan ML, Guntenspergen GR (2010) Influence of tidal range on the stability of coastal marshland. J Geophys Res 115:1–11. doi:10.1029/2009JF001400

    Article  Google Scholar 

  14. Kundu P, Cohen I, Dowling D (1990) Fluid Mechanics. Elsevier, Amsterdam

    Google Scholar 

  15. Leonard LA, Hine AC, Luther ME (1995) Surficial sediment transport and deposition processes in Juncus Romerianus marsh, West-Central Florida. J Coast Res 11:322–326

    Google Scholar 

  16. Nepf HM, Sullivan JA, Zavistoski RA (1997) A model for diffusion within emergent vegetation. Limnol Oceanogr 42:1735–1745. doi:10.4319/lo.1997.42.8.1735

    Article  Google Scholar 

  17. Orlins JJ, Gulliver JS (2003) Turbulence quantification and sediment resuspension in an oscillating grid chamber. Exp Fluids 34:662–677. doi:10.1007/s00348-003-0595-z

    Article  Google Scholar 

  18. Palmer MR, Nepf HM, Pettersson TJR (2004) accumulation and removal in aquatic systems. Limnol Oceanogr 49:76–85

    Article  Google Scholar 

  19. Pau C, Serra T, Colomer J et al (2013) Filtering capacity of Daphnia magna on sludge particles in treated wastewater. Water Res 47:181–186. doi:10.1016/j.watres.2012.09.047

    Article  Google Scholar 

  20. Pujol D, Colomer J, Serra T, Casamitjana X (2010) Effect of submerged aquatic vegetation on turbulence induced by an oscillating grid. Cont Shelf Res 30:1019–1029

    Article  Google Scholar 

  21. Pujol D, Nepf H (2012) Breaker-generated turbulence in and above a seagrass meadow. Cont Shelf Res 49:1–9

    Article  Google Scholar 

  22. Pujol D, Serra T, Colomer J, Casamitjana X (2013) Flow structure in canopy models dominated by progressive waves. J Hydrol 486:281–292

    Article  Google Scholar 

  23. Rapp RJ, Melville WK (1990) Laboratory measurements of deep-water breaking waves. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 331:735–800

    Article  Google Scholar 

  24. Reed DJ (2002) Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology 48:233–243. doi:10.1016/S0169-555X(02)00183-6

    Article  Google Scholar 

  25. Van Rijn LC (2007) Unified view of sediment transport by currents and waves. I: initiation of motion, bed roughness, and bed-load transport. J Hydraul Eng 133:649–667

    Article  Google Scholar 

  26. Rogers K, Saintilan N (2008) Relationships between surface elevation and groundwater in mangrove forests of southeast Australia. J Coast Res 24:63–69

    Article  Google Scholar 

  27. Rogers K, Saintilan N, Howe AJ, Rodríguez JF (2013) Sedimentation, elevation and marsh evolution in a southeastern Australian estuary during changing climatic conditions. Estuar Coast Shelf Sci 133:172–181

    Article  Google Scholar 

  28. Roget E, Colomer J, Casamitjana X, Llebot JE (1993) Bottom currents induced by baroclinic forcing in Lake Banyoles. Aquat Sci 55:206–227

    Article  Google Scholar 

  29. Ros À, Colomer J, Serra T et al (2014) Experimental observations on sediment resuspension within submerged model canopies under oscillatory flow. Cont Shelf Res 91:220–231. doi:10.1016/j.csr.2014.10.004

    Article  Google Scholar 

  30. Rottman JW, Simpson JE (1983) Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J Fluid Mech 135:95–110. doi:10.1017/S0022112083002979

    Article  Google Scholar 

  31. Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer Academic Press, Dordrecht

    Book  Google Scholar 

  32. Schuerch M, Rapaglia J, Liebetrau V et al (2012) Salt marsh accretion and storm tide variation: an example from a barrier island in the North Sea. Estuar Coast 35:486–500. doi:10.1007/s12237-011-9461-z

    Article  Google Scholar 

  33. Serra T, Colomer J, Cristina X et al (2001) Evaluation of a laser in situ scattering instrument for measuring the concentration of phytoplankton, purple sulphur bacteria and suspended inorganic sediments in lakes. J Environ Eng 127:1023–1030

    Article  Google Scholar 

  34. Serra T, Colomer J, Gacia E et al (2002) Effects of a turbid hydrothermal plume on the sedimentation rates in a karstic lake. Geophys Res Lett. doi:10.1029/2002GL015368

    Google Scholar 

  35. Serra T, Colomer J, Zamora L et al (2002) Seasonal development of a turbid hydrothermal lake plume and the effects on the fish distribution. Water Res 36:2753–2760. doi:10.1016/S0043-1354(01)00510-3

    Article  Google Scholar 

  36. Serra T, Fernando HJS, Rodríguez RV (2004) Effects of emergent vegetation on lateral diffusion in wetlands. Water Res 38:139–147. doi:10.1016/j.watres.2003.09.009

    Article  Google Scholar 

  37. Serra T, Soler M, Julia R et al (2005) Behaviour and dynamics of a hydrothermal plume in Lake Banyoles, Catalonia, NE Spain. Sedimentology 52:795–808. doi:10.1111/j.1365-3091.2005.00611.x

    Article  Google Scholar 

  38. Smith TJ, Anderson GH, Balentine K et al (2009) Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29:24–34

    Article  Google Scholar 

  39. Soler M, Colomer J, Serra T et al (2017) Sediment deposition from turbidity currents in simulated aquatic vegetation canopies. Sedimentology. doi:10.1111/sed.12342

    Google Scholar 

  40. Tanino Y, Nepf HM, Kulis PS (2005) Gravity currents in aquatic canopies. Water Resour Res 41:1–9. doi:10.1029/2005WR004216

    Article  Google Scholar 

  41. Tanner JE (2005) Edge effects on fauna in fragmented seagrass meadows. Aust Ecol 30:210–218. doi:10.1111/j.1442-9993.2005.01438.x

    Article  Google Scholar 

  42. Webster P, Holland G, Curry J, Chang H (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Serra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, T., Ros, A., Vergés, C. et al. Influence of a flooding event discharge on accretion in wetlands. Environ Fluid Mech 17, 833–851 (2017). https://doi.org/10.1007/s10652-017-9528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-017-9528-x

Keywords

Navigation