Skip to main content

Advertisement

Log in

LES validation of urban flow, part II: eddy statistics and flow structures

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Time-dependent three-dimensional numerical simulations such as large-eddy simulation (LES) play an important role in fundamental research and practical applications in meteorology and wind engineering. Whether these simulations provide a sufficiently accurate picture of the time-dependent structure of the flow, however, is often not determined in enough detail. We propose an application-specific validation procedure for LES that focuses on the time dependent nature of mechanically induced shear-layer turbulence to derive information about strengths and limitations of the model. The validation procedure is tested for LES of turbulent flow in a complex city, for which reference data from wind-tunnel experiments are available. An initial comparison of mean flow statistics and frequency distributions was presented in part I. Part II focuses on comparing eddy statistics and flow structures. Analyses of integral time scales and auto-spectral energy densities show that the tested LES reproduces the temporal characteristics of energy-dominant and flux-carrying eddies accurately. Quadrant analysis of the vertical turbulent momentum flux reveals strong similarities between instantaneous ejection-sweep patterns in the LES and the laboratory flow, also showing comparable occurrence statistics of rare but strong flux events. A further comparison of wavelet-coefficient frequency distributions and associated high-order statistics reveals a strong agreement of location-dependent intermittency patterns induced by resolved eddies in the energy-production range. The validation concept enables wide-ranging conclusions to be drawn about the skill of turbulence-resolving simulations than the traditional approach of comparing only mean flow and turbulence statistics. Based on the accuracy levels determined, it can be stated that the tested LES is sufficiently accurate for its purpose of generating realistic urban wind fields that can be used to drive simpler dispersion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Addison PS (2002) The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. Institute of Physics Publishing, London

    Book  Google Scholar 

  2. Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041,301

    Article  Google Scholar 

  3. Basu S, Vinuesa JF, Swift A (2008) Dynamic LES modeling of a diurnal cycle. J Appl Meteorol Climatol 47:1156–1174

    Article  Google Scholar 

  4. Beare RJ, Macvean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lund DLTS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Bound Lay Meteorol 118:247–272

    Article  Google Scholar 

  5. Biltoft CA (2001) Customer report for MOck Urban Setting Test (MUST). Tech. Rep. WDTC-FR-01-121, West Desert Test Center, U.S. Army Dugway Proving Ground, Dugway (UT), USA

  6. Boppana VBL, Xie ZT, Castro IP (2010) Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Bound Lay Meteorol 135:433–454

    Article  Google Scholar 

  7. Britter R, Schatzmann M (eds) (2007b) Model evaluation guidance and protocol document. COST Action 732. University of Hamburg, Hamburg

    Google Scholar 

  8. Chlond A, Böhringer O, Auerswald T, Müller F (2014) The effect of soil moisture and atmospheric conditions on the development of shallow cumulus convection: A coupled large-eddy simulation land surface model study. Meteorol Z 23(5):491–510

    Article  Google Scholar 

  9. Chow FK, Weigel AP, Street RL, Rotach MW, Xue M (2006) High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: methodology, verification, and sensitivity experiments. J Appl Meteorol Climatol 45:63–86

    Article  Google Scholar 

  10. Christen A, van Gorsel E, Vogt R (2007) Coherent structures in urban roughness sublayer turbulence. Int J Climatol 27:1955–1968

    Article  Google Scholar 

  11. Coceal O, Dobre A, Thomas TG (2007) Unsteady dynamics and organized structures from DNS over an idealized building canopy. Int J Climatol 27:1943–1953

    Article  Google Scholar 

  12. Conzemius R, Fedorovich E (2007) Bulk models of the sheared convective boundary layer: evaluation through large eddy simulations. J Atmos Sci 64:786–807

    Article  Google Scholar 

  13. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  14. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480

    Article  Google Scholar 

  15. Farge M (1992) Wavelet transforms and their application to turbulence. Annu Rev Fluid Mech 24:395–457

    Article  Google Scholar 

  16. Farge M, Schneider K, Pannekoucke O, Nguyen van yen R (2012) Multiscale representations. In: Fernando HJS (ed) Handbook of environmental fluid dynamics, vol. II: systems, pollution, modeling, and measurements. CRC Press, Boca Raton

    Google Scholar 

  17. Feddersen B (2005) Wind tunnel modelling of turbulence and dispersion above tall and highly dense urban roughness. Ph.D. thesis. Swiss Federal Institute of Technology. Diss. ETH No. 15934

  18. Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81:219–230

    Article  Google Scholar 

  19. Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  20. Fischer R (2011) Entwicklung eines problemorientierten Software-Pakets zur automatisierten Aufbereitung, Analyse und Dokumentation von im Windkanal produzierten Daten zur LES-Validierung. Ph.D. thesis, University of Hamburg, German

  21. Franke J, Hellsten A, Schlünzen KH, Carissimo B (2011) The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. Int J Environ Pollut 44:419–427

    Article  Google Scholar 

  22. Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736

    Article  Google Scholar 

  23. Grossmann A, Morlet J, Paul T (1985) Transforms associated to square integrable group representations I: general results. J Math Anal 26:2473–2479

    Google Scholar 

  24. Harms F, Leitl B, Schatzmann M, Patnaik G (2011) Validating LES-based flow and dispersion models. J Wind Eng Ind Aerod 99:289–295

    Article  Google Scholar 

  25. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Article  Google Scholar 

  26. Kaiser G (1994) A friendly guide to wavelets, 1st edn. Birkhäuser, Boston

    Google Scholar 

  27. Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Bound Lay Meteorol 112:343–368

    Article  Google Scholar 

  28. Letzel MO (2015) Urban large-eddy simulation (LES), advanced computational fluid dynamics for urban climatic maps. In: Ng E, Ren C (eds) The urban climatic map: a methodology for sustainable urban planning, chap 32. Routledge, New York, pp 421–428

    Google Scholar 

  29. Letzel MO, Raasch S (2003) Large eddy simulation of thermally induced oscillations in the convective boundary layer. J Atmos Sci 60:2328–2341

    Article  Google Scholar 

  30. Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Goldstine HH (ed) Proceedings of the IBM scientific computing symposium on environmental sciences, Yorktown Height, New York, pp 195–210

  31. Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New York

    Google Scholar 

  32. Meneveau C (1991) Analysis of turbulence in the orthonormal wavelet representation. J Fluid Mech 232:469–520

    Article  Google Scholar 

  33. Michioka T, Chow FK (2008) High-resolution large-eddy simulation of scalar transport in atmospheric boundary layer flow over complex terrain. J Appl Meteorol Climatol 47:3150–3169

    Article  Google Scholar 

  34. Morlet J (1981) Sampling theory and wave propagation. In: Proceedings of the 51st annual international meeting of the society of exploration geophysicists, Los Angeles (CA), USA

  35. Nieuwstadt FTM, Mason PJ, Moeng CH, Schumann U (1993) Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In: Durst F, Launder BE, Friedrich R, Schmidt FW (eds) Turbulent Shear Flows 8. Springer, New York, pp 343–367

    Chapter  Google Scholar 

  36. Nobach H, Tropea C, Cordier L, Bonnet JP, Delville J, Lewalle J, Farge M, Schneider K, Adrian RJ (2007) Review of some fundamentals of data processing. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics analysis and post-processing of data, part D. Springer, New York

    Google Scholar 

  37. Oikawa S, Meng Y (1995) Turbulence characteristics and organized motion in a suburban roughness sublayer. Bound Lay Meteorol 74:289–312

    Article  Google Scholar 

  38. O’Neill PL, Nicolaides D, Honnery D, Soria J (2004) Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In: Proceedings of the 15th Australasian fluid mechanics conference, The University of Sydney, Sydney, Australia

  39. Patnaik G, Boris JP, Grinstein FF, Iselin JP, Hertwig D (2012) Large scale urban simulations with FCT. In: Kuzmin D, Löhner R, Turek S (eds) Flux-corrected transport: principles, algorithms, and applications, scientific computing, 2nd edn. Springer, New York, pp 91–117

    Chapter  Google Scholar 

  40. Patnaik G, Grinstein FF, Boris JP, Young TR, Parmhed O (2007) Large-scale urban simulations. In: Grinstein FF, Margolin LG, Rider WJ (eds) Implicit large Eddy simulation: computing turbulent fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  41. Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108:363–382

    Article  Google Scholar 

  42. Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Ann Rev Fluid Mech 13:97–129

    Article  Google Scholar 

  43. Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23:601–639

    Article  Google Scholar 

  44. Rotach MW (1993) Turbulence close to a rough urban surface - Part I: Reynolds stresses. Bound-Lay Meteorol 65:1–28

    Article  Google Scholar 

  45. Rotach MW (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29:1473–1486

    Article  Google Scholar 

  46. Roth M (2000) Review of atmospheric turbulence over cities. Q J Roy Meteor Soc 126:941–990

    Article  Google Scholar 

  47. Sabatino SD, Buccolieri R, Olesen HR, Ketzel M, Berkowicz R, Franke J, Schatzmann M, Schlunzen K, Leitl B, Britter R, Borrego C, Costa A, Castelli S, Reisin T, Hellsten A, Saloranta J, Moussiopoulos N, Barmpas F, Brzozowski K, Goricsan I, Balczo M, Bartzis J, Efthimiou G, Santiago J, Martilli A, Piringer M, Baumann-Stanzer K, Hirtl M, Baklanov A, Nuterman R, Starchenko A (2011) COST 732 in practice: the MUST model evaluation exercise. Int J Environ Pollut 44:403–418

    Article  Google Scholar 

  48. Schatzmann M, Britter R (2011) Quality assurance and improvement of micro-scale meteorological models. Int J Environ Pollut 44:139–146

    Article  Google Scholar 

  49. Schlegel F, Stiller J, Bienert A, Maas HG, Queck R, Bernhofer C (2012) Large-eddy simulation of inhomogeneous canopy flows using high resolution terrestrial laser scanning data. J Fluid Mech 142:223–243

    Google Scholar 

  50. Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys 18:376–404

    Article  Google Scholar 

  51. Seifert A, Heus T, Pincus R, Stevens B (2015) Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. J Adv Model Earth Sy 7:1918–1937

    Article  Google Scholar 

  52. Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Bound-Lay Meteorol 61(1):47–64

    Article  Google Scholar 

  53. Shaw RH, Tavangar J, Ward DP (1983) Structure of reynolds stress in a canopy. J Clim Appl Meteorol 22:1922–1931

    Article  Google Scholar 

  54. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  55. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  56. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  57. Townsend AA (1956) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    Google Scholar 

  58. Trini Castelli S, Baumann-Stanzer K, Leitl B, Milliez CM, Berbekar E, Rakai A, Fuka V, Hellsten A, Petrov A, Efthimiou G, Andronopoulos S, Tinarelli G, Tavares R, Armand P, Gariazzo C, Jurcakova K, Gašparac G (2016) Evaluation of local-scale models for accidental releases in built environments: results of the modelling exercises in COST Action ES1006. In: Steyn GD, Chaumerliac N (eds) Air pollution modeling and its application XXIV. Springer, New York, pp 497–502

    Chapter  Google Scholar 

  59. Wallace JM (2016) Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech 48:131–158

    Article  Google Scholar 

  60. Wallace JM, Eckelmann H, Brodkey R (1972) The wall region in turbulent shear flow. J Fluid Mech 53:39–48

    Article  Google Scholar 

  61. Willmarth WW, Lu SS (1972) Structure of the Reynolds stress near the wall. J Fluid Mech 55:65–92

    Article  Google Scholar 

  62. Wood CR, Barlow JF, Belcher SE, Dobre A, Arnold SJ, Balogun AA, Lingard JJN, Smalley RJ, Tate JE, Tomlin AS, Britter RE, Cheng H, Martin D, Petersson FK, Shallcross DE, White IR, Neophytou MK, Robins AG (2009) Dispersion experiments in central London: the 2007 DAPPLE project. B Am Meteorol Soc 90:955–969

    Article  Google Scholar 

  63. Wyngaard JC, Coté OR (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98:590–603

    Article  Google Scholar 

  64. Yaglom AM (1987) Correlation theory of stationary and related random functions I: basic results. Springer, New York

    Google Scholar 

  65. Yue W, Parlange MB, Meneveau C, Zhu W, van Hout R, Katz J (2007) Large-eddy simulation of plant canopy flows using plant-scale representation. Bound-Lay Meteorol 124:183–203

    Article  Google Scholar 

Download references

Acknowledgements

The numerical simulations with the LES code FAST3D-CT were carried out at the Laboratories for Computational Physics and Fluid Dynamics of the U.S. Naval Research Laboratory in Washington D.C., USA. The authors wish to express their thanks to Jay Boris, Mi-Young Obenschain and other collaborators there. Further thanks is given to colleagues at the Environmental Wind Tunnel Laboratory at the University of Hamburg. Financial funding by the German Federal Office of Civil Protection and Disaster Assistance as well as by the Ministry of the Interior of the City of Hamburg within the “Hamburg Pilot Project” is gratefully acknowledged (BBK research contract no. BBK III.1-413-10-364). Parts of the wind-tunnel model construction were financially supported by the KlimaCampus at the University of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Hertwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertwig, D., Patnaik, G. & Leitl, B. LES validation of urban flow, part II: eddy statistics and flow structures. Environ Fluid Mech 17, 551–578 (2017). https://doi.org/10.1007/s10652-016-9504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-016-9504-x

Keywords

Navigation