Impact of windage on ocean surface Lagrangian coherent structures


Windage, the additional direct, wind-induced drift of material floating at the free surface of the ocean, plays a crucial role in the surface transport of biological and contaminant material. Lagrangian coherent structures (LCS) uncover the hidden organizing structures that underlie material transport by fluid flows. Despite numerous studies in which LCS ideas have been applied to ocean surface transport scenarios, such as oil spills, debris fields and biological material, there has been no consideration of the influence of windage on LCS. Here we investigate and demonstrate the impact of windage on ocean surface LCS via a case study of the ocean surrounding the UNESCO World Heritage Ningaloo coral reef coast in Western Australia. We demonstrate that the inclusion of windage is necessary when applying LCS to the study of surface transport of any floating material in the ocean.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Abascal AJ, Castanedo S, Medina R, Losada IJ, Alvarez-Fanjul E (2009) Application of HF radar currents to oil spill modeling. Mar Pollut Bull 58:238–248

    Article  Google Scholar 

  2. 2.

    Allshouse MR, Peacock T (2015) Lagrangian based methods for coherent structure detection. Chaos. 25:097617

    Article  Google Scholar 

  3. 3.

    Beron-Vera FJ, Wang Y, Olascoaga MJ, Goni GJ, Haller G (2013) Objective detection of oceanic eddies and the Agulhas leakage. J Phys Oceanogr 43:1426–1438

    Article  Google Scholar 

  4. 4.

    Breivik O, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced drift of objects at sea: The leeway field method. Appl Ocean Res 33:100–109

    Article  Google Scholar 

  5. 5.

    Coulliette C, Lekien F, Paduano J, Haller G, Marsden J (2007) Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics. Env Sci Tech 41:6562–6572

    Article  Google Scholar 

  6. 6.

    Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466

    Article  Google Scholar 

  7. 7.

    Farazmand M, Haller G (2012) Computing Lagrangian coherent structures from their variational theory. CHAOS 22(1):013128

    Article  Google Scholar 

  8. 8.

    Farazmand M, Haller G (2013) Attracting and repelling Lagrangian coherent structures from a single computation. CHAOS 23:023101

    Article  Google Scholar 

  9. 9.

    Galt JA (1994) Trajectory analysis for oil spills. J Adv Mar Tech Conf 11:91–126

    Google Scholar 

  10. 10.

    Godfrey JS, Ridgway KR (1985) The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: longshore steric height gradients, wind stresses and geostrophic flow. J Phys Oceanogr 15:481–495

    Article  Google Scholar 

  11. 11.

    Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York

    Google Scholar 

  12. 12.

    Haller G (2002) Lagrangian coherent structures from approximate velocity field data. Phys Fluids A 14(6):1851–1861

    Article  Google Scholar 

  13. 13.

    Haller G, Sapsis T (2008) Where do inertial particles go in fluid flows? Phys D 237:573–583

    Article  Google Scholar 

  14. 14.

    Haller G (2015) Lagrangian coherent structures. Ann Rev Fluid Mech 47:137–161

    Article  Google Scholar 

  15. 15.

    Karrasch D, Farazmand M, Haller G (2015) Attraction-based computation of hyperbolic Lagrangian coherent structures. J Comput Dynamics 2:83–93

    Article  Google Scholar 

  16. 16.

    Lowe R, Ivey GN, Brinkman RM, Jones NL (2012) Seasonal circulation and temperature variability near the North West Cape of Australia. J Geophys Res Oceans 117:C04010

    Google Scholar 

  17. 17.

    MacFadyen A, Watabayashi GY, Barker CH, Beegle-Krause CJ (2011) Tactical modeling of surface oil transport during the deepwater horizon spill response. Geophys Monog Ser 195:167–178

    Google Scholar 

  18. 18.

    Mathur M, Haller G, Peacock T, Ruppert-Felsot JE, Swinney HL (2007) Uncovering the Lagrangian skeleton of turbulence. Phys Rev Lett 98:144502

    Article  Google Scholar 

  19. 19.

    Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  Google Scholar 

  20. 20.

    McMahon K et al (2014) The movement ecology of seagrasses. Proc R Soc B 281:20140878

    Article  Google Scholar 

  21. 21.

    Mezic I, Loire S, Fonoberov VA, Hogan P (2010) A new mixing diagnostic and Gulf oil spill movement. Science. 330:486–489

    Article  Google Scholar 

  22. 22.

    Ruiz-Montoya L, Lowe RJ, van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265

    Article  Google Scholar 

  23. 23.

    Ruiz-Montoya L, Lowe RJ, Kendrick G (2015) Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Mov Ecol 3:1–14

    Article  Google Scholar 

  24. 24.

    Mountain DG (1980) On predicting iceberg drift. Cold Reg. Sci Tech 1:273–282

    Article  Google Scholar 

  25. 25.

    Niller PP, Davis RE, White HJ (1987) Water-following characteristics of a mixed layer drifter. Deep Sea Res A 34:1867–1881

    Article  Google Scholar 

  26. 26.

    Olascoaga MJ, Haller G (2012) Forecasting sudden changes in environmental contamination patterns. Proc Natl Acad Sci 109:4738–4743

    Article  Google Scholar 

  27. 27.

    Olascoaga MJ et al (2013) Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys Res Oceans 40:61716175

    Google Scholar 

  28. 28.

    Peacock T, Haller G (2013) Lagrangian coherent structures: The hidden skeleton of fluid flows. Phys Today 66:41–47

    Article  Google Scholar 

  29. 29.

    Reed M, Turner C, Odulo A (1994) The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Sci Tech Bull 1:143–157

    Article  Google Scholar 

  30. 30.

    Samelson RM (2013) Lagrangian motion, coherent structures, and lines of persistent material strain. Ann Rev Mar Sci 5:137–163

    Article  Google Scholar 

  31. 31.

    Samuels WB, Huang NE, Amstutz DE (1982) An oil spill trajectory analysis model with a variable wind deflection angle. J Ocean Eng 9:347–360

    Article  Google Scholar 

  32. 32.

    Smith RL, Huyer A, Godfrey JS, Church JA (1991) The Leeuwin current off Western Australia, 1986-1987. J Phys Oceanogr 21:323–345

    Article  Google Scholar 

  33. 33.

    Sturges W, Bozec A (2013) A puzzling disagreement between observations and numerical models in the central Gulf of Mexico. J Phys Oceanogr. 43:2673–2681

    Article  Google Scholar 

  34. 34.

    Spaulding ML (1988) A state-of-the-art review of oil spill trajectory and fate modeling. Oil Chem Poll 4:39–55

    Article  Google Scholar 

  35. 35.

    Xu J et al (2013) Dynamics of the summer shelf circulation and transient upwelling off Ningaloo Reef, Western Australia. J Geophys Res Oceans 118:1–27

    Google Scholar 

  36. 36.

    Xu J, Lowe RJ, Ivey GN, Jones NL, Brinkan R (2015) Observations of the shelf circulation dynamics along Ningaloo Reef, Western Australia during the austral spring and summer. Cont Shelf Res 95:54–73

    Article  Google Scholar 

Download references


Simulation data and LCS codes are available upon request to MRA. TP and MRA acknowledge funding support from ONR grant N000141210665. Additional support was provided by the MIT MISTI Global Fund and a UWA Gledden Fellowship. GI, NJ and RL acknowledge support from an Australian Research Council (ARC) Discovery Project Grant (DP120103036) and RJ from an ARC Future Fellowship Grant (FT110100201).

Author information



Corresponding author

Correspondence to Michael R. Allshouse.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allshouse, M.R., Ivey, G.N., Lowe, R.J. et al. Impact of windage on ocean surface Lagrangian coherent structures. Environ Fluid Mech 17, 473–483 (2017).

Download citation


  • Lagrangian coherent structures
  • Windage
  • Ningaloo