Environmental Fluid Mechanics

, Volume 17, Issue 3, pp 473–483 | Cite as

Impact of windage on ocean surface Lagrangian coherent structures

  • Michael R. AllshouseEmail author
  • Gregory N. Ivey
  • Ryan J. Lowe
  • Nicole L. Jones
  • C. J. Beegle-Krause
  • Jiangtao Xu
  • Thomas Peacock
Original Article


Windage, the additional direct, wind-induced drift of material floating at the free surface of the ocean, plays a crucial role in the surface transport of biological and contaminant material. Lagrangian coherent structures (LCS) uncover the hidden organizing structures that underlie material transport by fluid flows. Despite numerous studies in which LCS ideas have been applied to ocean surface transport scenarios, such as oil spills, debris fields and biological material, there has been no consideration of the influence of windage on LCS. Here we investigate and demonstrate the impact of windage on ocean surface LCS via a case study of the ocean surrounding the UNESCO World Heritage Ningaloo coral reef coast in Western Australia. We demonstrate that the inclusion of windage is necessary when applying LCS to the study of surface transport of any floating material in the ocean.


Lagrangian coherent structures Windage Ningaloo 



Simulation data and LCS codes are available upon request to MRA. TP and MRA acknowledge funding support from ONR grant N000141210665. Additional support was provided by the MIT MISTI Global Fund and a UWA Gledden Fellowship. GI, NJ and RL acknowledge support from an Australian Research Council (ARC) Discovery Project Grant (DP120103036) and RJ from an ARC Future Fellowship Grant (FT110100201).

Supplementary material

10652_2016_9499_MOESM1_ESM.pdf (46 kb)
Supplementry material 1 (PDF 47 kb) (7.7 mb)
Supplementry material 2 (MOV 7925 kb) (1.5 mb)
Supplementry material 3 (MOV 1523 kb) (3.6 mb)
Supplementry material 4 (MOV 3690 kb) (822 kb)
Supplementry material 5 (MOV 823 kb)


  1. 1.
    Abascal AJ, Castanedo S, Medina R, Losada IJ, Alvarez-Fanjul E (2009) Application of HF radar currents to oil spill modeling. Mar Pollut Bull 58:238–248CrossRefGoogle Scholar
  2. 2.
    Allshouse MR, Peacock T (2015) Lagrangian based methods for coherent structure detection. Chaos. 25:097617CrossRefGoogle Scholar
  3. 3.
    Beron-Vera FJ, Wang Y, Olascoaga MJ, Goni GJ, Haller G (2013) Objective detection of oceanic eddies and the Agulhas leakage. J Phys Oceanogr 43:1426–1438CrossRefGoogle Scholar
  4. 4.
    Breivik O, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced drift of objects at sea: The leeway field method. Appl Ocean Res 33:100–109CrossRefGoogle Scholar
  5. 5.
    Coulliette C, Lekien F, Paduano J, Haller G, Marsden J (2007) Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics. Env Sci Tech 41:6562–6572CrossRefGoogle Scholar
  6. 6.
    Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  7. 7.
    Farazmand M, Haller G (2012) Computing Lagrangian coherent structures from their variational theory. CHAOS 22(1):013128CrossRefGoogle Scholar
  8. 8.
    Farazmand M, Haller G (2013) Attracting and repelling Lagrangian coherent structures from a single computation. CHAOS 23:023101CrossRefGoogle Scholar
  9. 9.
    Galt JA (1994) Trajectory analysis for oil spills. J Adv Mar Tech Conf 11:91–126Google Scholar
  10. 10.
    Godfrey JS, Ridgway KR (1985) The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: longshore steric height gradients, wind stresses and geostrophic flow. J Phys Oceanogr 15:481–495CrossRefGoogle Scholar
  11. 11.
    Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Haller G (2002) Lagrangian coherent structures from approximate velocity field data. Phys Fluids A 14(6):1851–1861CrossRefGoogle Scholar
  13. 13.
    Haller G, Sapsis T (2008) Where do inertial particles go in fluid flows? Phys D 237:573–583CrossRefGoogle Scholar
  14. 14.
    Haller G (2015) Lagrangian coherent structures. Ann Rev Fluid Mech 47:137–161CrossRefGoogle Scholar
  15. 15.
    Karrasch D, Farazmand M, Haller G (2015) Attraction-based computation of hyperbolic Lagrangian coherent structures. J Comput Dynamics 2:83–93CrossRefGoogle Scholar
  16. 16.
    Lowe R, Ivey GN, Brinkman RM, Jones NL (2012) Seasonal circulation and temperature variability near the North West Cape of Australia. J Geophys Res Oceans 117:C04010Google Scholar
  17. 17.
    MacFadyen A, Watabayashi GY, Barker CH, Beegle-Krause CJ (2011) Tactical modeling of surface oil transport during the deepwater horizon spill response. Geophys Monog Ser 195:167–178Google Scholar
  18. 18.
    Mathur M, Haller G, Peacock T, Ruppert-Felsot JE, Swinney HL (2007) Uncovering the Lagrangian skeleton of turbulence. Phys Rev Lett 98:144502CrossRefGoogle Scholar
  19. 19.
    Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889CrossRefGoogle Scholar
  20. 20.
    McMahon K et al (2014) The movement ecology of seagrasses. Proc R Soc B 281:20140878CrossRefGoogle Scholar
  21. 21.
    Mezic I, Loire S, Fonoberov VA, Hogan P (2010) A new mixing diagnostic and Gulf oil spill movement. Science. 330:486–489CrossRefGoogle Scholar
  22. 22.
    Ruiz-Montoya L, Lowe RJ, van Niel K, Kendrick G (2012) The role of hydrodynamics on seed dispersal in seagrasses. Limnol Oceanogr 57:1257–1265CrossRefGoogle Scholar
  23. 23.
    Ruiz-Montoya L, Lowe RJ, Kendrick G (2015) Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Mov Ecol 3:1–14CrossRefGoogle Scholar
  24. 24.
    Mountain DG (1980) On predicting iceberg drift. Cold Reg. Sci Tech 1:273–282CrossRefGoogle Scholar
  25. 25.
    Niller PP, Davis RE, White HJ (1987) Water-following characteristics of a mixed layer drifter. Deep Sea Res A 34:1867–1881CrossRefGoogle Scholar
  26. 26.
    Olascoaga MJ, Haller G (2012) Forecasting sudden changes in environmental contamination patterns. Proc Natl Acad Sci 109:4738–4743CrossRefGoogle Scholar
  27. 27.
    Olascoaga MJ et al (2013) Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys Res Oceans 40:61716175Google Scholar
  28. 28.
    Peacock T, Haller G (2013) Lagrangian coherent structures: The hidden skeleton of fluid flows. Phys Today 66:41–47CrossRefGoogle Scholar
  29. 29.
    Reed M, Turner C, Odulo A (1994) The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Sci Tech Bull 1:143–157CrossRefGoogle Scholar
  30. 30.
    Samelson RM (2013) Lagrangian motion, coherent structures, and lines of persistent material strain. Ann Rev Mar Sci 5:137–163CrossRefGoogle Scholar
  31. 31.
    Samuels WB, Huang NE, Amstutz DE (1982) An oil spill trajectory analysis model with a variable wind deflection angle. J Ocean Eng 9:347–360CrossRefGoogle Scholar
  32. 32.
    Smith RL, Huyer A, Godfrey JS, Church JA (1991) The Leeuwin current off Western Australia, 1986-1987. J Phys Oceanogr 21:323–345CrossRefGoogle Scholar
  33. 33.
    Sturges W, Bozec A (2013) A puzzling disagreement between observations and numerical models in the central Gulf of Mexico. J Phys Oceanogr. 43:2673–2681CrossRefGoogle Scholar
  34. 34.
    Spaulding ML (1988) A state-of-the-art review of oil spill trajectory and fate modeling. Oil Chem Poll 4:39–55CrossRefGoogle Scholar
  35. 35.
    Xu J et al (2013) Dynamics of the summer shelf circulation and transient upwelling off Ningaloo Reef, Western Australia. J Geophys Res Oceans 118:1–27Google Scholar
  36. 36.
    Xu J, Lowe RJ, Ivey GN, Jones NL, Brinkan R (2015) Observations of the shelf circulation dynamics along Ningaloo Reef, Western Australia during the austral spring and summer. Cont Shelf Res 95:54–73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Michael R. Allshouse
    • 1
    Email author
  • Gregory N. Ivey
    • 2
  • Ryan J. Lowe
    • 3
  • Nicole L. Jones
    • 2
  • C. J. Beegle-Krause
    • 4
  • Jiangtao Xu
    • 2
  • Thomas Peacock
    • 1
  1. 1.ENDLab, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.School of Civil, Environmental and Mining Engineering & Oceans InstituteUniversity of Western AustraliaCrawleyAustralia
  3. 3.School of Earth and Environment & Oceans InstituteUniversity of Western AustraliaCrawleyAustralia
  4. 4.Materials and Chemistry/Environmental ModelingSINTEFTrondheimNorway

Personalised recommendations