Material dispersion by oceanic internal waves

  • Peng Wang
  • Tamay M. Özgökmen
  • Angelique C. Haza
Original Article

Abstract

Internal gravity waves that are generated in the open ocean have a universal frequency spectrum, called Garrett–Munk spectrum. By initializing internal waves that satisfy the Garrett–Munk spectrum in a non-hydrostatic numerical model, we investigate the material dispersion produced by these internal waves. Three numerical experiments are designed: Exp.-1 uses a linearly stratified fluid, Exp.-2 has an upper mixed layer, and Exp.-3 incorporates a circular front into the upper mixed layer. Resorting to neutrally buoyant particles, we investigate the dispersion in terms of metrics of the relative dispersion and finite-scale Lyapunov exponent (FSLE). Exp.-1 shows that the dispersion regime produced by these internal waves is between ballistic and diffusive based on relative dispersion, and is however ballistic according to FSLE. The maximum FSLE at scales of 100 m is about 5 day\(^{-1}\), which is comparable to that calculated using ocean drifters. Exp.-2 demonstrates that internal waves can generate flows and material dispersion in an upper mixed layer. However, when mixed layer eddies are present, as in Exp.-3, the dispersion in the mixed layer is controlled by the eddies. In addition, we show that inertial oscillations do not affect the relative dispersion, but impact FSLE at scales of inertial oscillations.

Keywords

Relative dispersion Finite-scale Lyapunov exponent (FSLE) Garrett–Munk spectrum Inertial oscillation 

References

  1. 1.
    Artale V, Boffetta G, Celani A, Cencini M, Vulpiani A (1997) Dispersion of passive tracers in closed basins: beyond the diffusion coefficient. Phys Fluid 9:3162–3171CrossRefGoogle Scholar
  2. 2.
    Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1997) Predictability in the large: an extension of the concept of Lyapunov exponent. J Phys A 30:1–26CrossRefGoogle Scholar
  3. 3.
    Babiano A, Basdevant C, Le Roy P, Sadourny R (1990) Relative dispersion in two-dimensional turbulence. J Fluid Mech 214:535–557CrossRefGoogle Scholar
  4. 4.
    Batchelor GK (1950) The application of the similarity theory of turbulence to atmospheric diffusion. Q J R Meteorol Soc 76:133–146CrossRefGoogle Scholar
  5. 5.
    Bennett AF (1984) Relative dispersion: local and nonlocal dynamics. J Atmos Sci 41:1881–1886CrossRefGoogle Scholar
  6. 6.
    Beron-Vera FJ, LaCasce JH (2016) Statistics of simulated and observed pair separations in the Gulf of Mexico. J Phys Oceanogr 46:2183–2199CrossRefGoogle Scholar
  7. 7.
    Berti S, Santos FAD, Lacorata G, Vulpiani A (2011) Lagrangian drifter dispersion in the southwestern Atlantic ocean. J Phys Oceanogr 41:1659–1672CrossRefGoogle Scholar
  8. 8.
    Boffetta G, Celani A, Cencini M, Lacorata G, Vulpiani A (2000) Nonasymptotic properties of transport and mixing. Chaos 10:50–60CrossRefGoogle Scholar
  9. 9.
    Cushman-Roisin B, Beckers J-M (2011) Introduction to geophysical fluid dynamics, 2nd edn. Academic Press, CambridgeGoogle Scholar
  10. 10.
    Davis R (1985) Drifter observations of coastal surface currents during CODE: the method and descriptive view. J Geophys Res 90:4741–4755CrossRefGoogle Scholar
  11. 11.
    Fischer PF (1997) An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J Comput Phys 133(1):84–101CrossRefGoogle Scholar
  12. 12.
    Garrett C, Munk W (1975) Space-time scales of internal waves: a progress report. J Geophys Res 80(3):291–297CrossRefGoogle Scholar
  13. 13.
    Garrett C, Munk W (1979) Internal waves in the ocean. Annu Rev Fluid Mech 11:339–369CrossRefGoogle Scholar
  14. 14.
    Haza AC, Özgökmen TM, Griffa A, Molcard A, Poulain P-M, Peggion G (2010) Transport properties in small-scale coastal flows: relative dispersion from VHF rada measurements in the Gulf of La Spezia. Ocean Dyn 60:861–882CrossRefGoogle Scholar
  15. 15.
    Haza AC, Poje AC, Özgökmen TM, Martin P (2008) Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Model 22:48–65CrossRefGoogle Scholar
  16. 16.
    Iudicone D, Lacorata G, Rupolo V, Santoleri R, Vulpiani A (2002) Sensitivity of numerical tracer trajectories to uncertainties in OGCM velocity fields. Ocean Model 4:313–325CrossRefGoogle Scholar
  17. 17.
    Kirwan AD, McNally GJ, Reyna E, Merrell WJ (1978) The near-surface circulation of the eastern North Pacific. J Phys Oceanogr 8:937–945CrossRefGoogle Scholar
  18. 18.
    Koszalka I, LaCasce JH, Orvik KA (2009) Relative dispersion in the Nordic Seas. J Mar Res 67:411–433CrossRefGoogle Scholar
  19. 19.
    LaCasce JH (2008) Statistics from Lagrangian observations. Prog Oceanogr 77:1–29CrossRefGoogle Scholar
  20. 20.
    LaCasce JH, Bower A (2000) Relative dispersion in the subsurface North Atlantic. J Mar Res 58:863–894CrossRefGoogle Scholar
  21. 21.
    LaCasce JH, Ohlmann C (2003) Relative dispersion at the surface of the Gulf of Mexico. J Mar Res 61:285–312CrossRefGoogle Scholar
  22. 22.
    Lumpkin R, Elipot S (2010) Surface drifter pair spreading in the North Atlantic. J Geophys Res 115:C12017CrossRefGoogle Scholar
  23. 23.
    Mensa JA, Özgökmen TM, Poje AC, Imberger J (2015) Material transport in a convective surface mixed layer under weak wind forcing. Ocean Model 96:226–242CrossRefGoogle Scholar
  24. 24.
    Molcard A, Poje AC, Özgökmen TM (2006) Directed drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories. Ocean Model 12:268–289CrossRefGoogle Scholar
  25. 25.
    Munk W (1981) Internal waves and small-scale processes. Evolution of physical oceanography. MIT Press, Cambridge, pp 264–291Google Scholar
  26. 26.
    Özgökmen TM, Poje AC, Fischer PF, Childs H, Krishnan H, Garth C, Haza AC, Ryan E (2012) On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Model 56:16–30CrossRefGoogle Scholar
  27. 27.
    Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488CrossRefGoogle Scholar
  28. 28.
    Poje A, Özgökmen TM, Lipphardt BL, Haus BK, Ryan EH, Haza AC, Jacobs GA, Reniers AJHM, Olascoaga MJ, Novelli G, Griffa A, Bero-Vera FJ, Chen SS, Coelho E, Hogan PJ, Kirwan AD, Huntley HS, Mariano AJ (2014) Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc Natl Acad Sci 111(35):12693–12698CrossRefGoogle Scholar
  29. 29.
    Poulain P-M (1999) Drifter observations of surface circulation in the Adriatic Sea between December 1994 and March 1996. J Mar Syst 20:231–253CrossRefGoogle Scholar
  30. 30.
    Poulain P-M (2001) Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. J Mar Syst 29:3–32CrossRefGoogle Scholar
  31. 31.
    Pratt LJ, Rypina II, Özgökmen TM, Wang P, Childs H, Bebieva Y (2014) Chaotic advection in a steady, three-dimensional, Ekman-driven eddy. J Fluid Mech 738:143–183CrossRefGoogle Scholar
  32. 32.
    Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbor graph. Proc R Soc Lond 110:709–737CrossRefGoogle Scholar
  33. 33.
    Rypina II, Pratt LJ, Wang P, Özgökmen TM, Mezic I (2015) Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy. Chaos 25(8):087401CrossRefGoogle Scholar
  34. 34.
    Schroeder K, Chiggiato J, Haza AC, Griffa A, Özgökmen TM, Zanasca P, Molcard A, Borghini M, Poulain PM, Gerin R, Zambianchi E, Falco P, Trees C (2012) Targeted Lagrangian sampling of submesoscale dispersion at a costal frontal zone. Geophys Res Lett 39:L11608CrossRefGoogle Scholar
  35. 35.
    Schroeder K, Haza AC, Griffa A, Özgökmen TM, Poulain PM, Gerin R, Rixen M (2011) Relative dispersion in the Liguro-Provenal basin: from sub-mesoscale to mesoscale. Deep Sea Res Part I 58(3):209–228CrossRefGoogle Scholar
  36. 36.
    Sun H, Kunze E (1999) Internal wave-wave interactions. Part I: the role of internal wave vertical divergence. J Phys Oceanogr 29(11):2886–2904CrossRefGoogle Scholar
  37. 37.
    Trani M, Falco P, Zambianchi E, Sallée JB (2014) Aspects of the Antarctic Circumpolar Current dynamics investigated with drifter data. Prog Oceanogr 125:1–15CrossRefGoogle Scholar
  38. 38.
    van Sebille E, Waterman S, Barthel A, Lumpkin R, Keating SR, Fogwill C, Turney C (2015) Pairwise surface drifter separation in the western Pacific sector of the Southern Ocean. J Geophys Res 120:6769–6781CrossRefGoogle Scholar
  39. 39.
    Wang P, Özgökmen TM (2015) How do hydrodynamic instabilities affect 3D transport in geophysical vortices? Ocean Model 87:48–66CrossRefGoogle Scholar
  40. 40.
    Wang P, Özgökmen TM (2016) Spiral inertial waves emitted from geophysical vortices. Ocean Model 99:22–42CrossRefGoogle Scholar
  41. 41.
    Zambianchi E, Griffa A (1994) Effects of finite scales of turbulence on dispersion estimates. J Mar Res 52:129–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations