Environmental Fluid Mechanics

, Volume 17, Issue 2, pp 303–322 | Cite as

Alternating skimming flow over a stepped spillway

  • Pedro LopesEmail author
  • Jorge Leandro
  • Rita F. Carvalho
  • Daniel B. Bung
Original Article


The study of stepped spillways in laboratory scales has been essentially focused on two separated sub-regimes within skimming flow. In this paper we investigate the appearance of an unclassified alternating skimming flow regime in a 0.5 m wide stepped spillway which does not fit on these earlier definitions, and which does not occur in a 0.3 m wide spillway. Our aim is to explain the genesis of this unclassified flow which is visualised in the physical stepped spillway, by using 3D numerical modelling. Flow depths and velocities are measured using an ultrasonic sensor and Bubble Image Velocimetry in the wider flume (0.5 m). The numerical model is validated with the experimental data from the 0.5 m wide spillway. After validation, the channel width of the same numerical model is reduced to 0.3 m wide spillway in order to characterise (compare) the case without (with) alternating skimming flow. Both cases are solved using Reynolds-Averaged Navier–Stokes equations together with the Volume-of-Fluid technique and SST k-\(\omega\) turbulence model. The experimental results reveal that the alternating skimming flow regime is characterised by an evident seesaw pattern of flow properties over consecutive steps. In turn, the numerical modelling clarified that this seesaw pattern is due to the presence of a complex system of cross waves along the spillway. These cross waves are also responsible for a mass and momentum exchange in the transversal direction and for the formation of the alternating skimming flow in the spillway.


Air-water flow Alternating skimming flow Computational fluid dynamics Flow depths Stepped spillway 



Binary coefficient (-)


Fluid x, where \(x=\{1,2\}\) (-)


Step length (m)


Total drop height (m)


Vertical drop height needed to get a uniform flow (m)


Critical flow depth (m)


Flow depth measured with the Ultrasonic Sensor (m)


Flow depth calculated with Numerical model (m)


Turbulent kinetic energy (\(m^2s^{-2}\))


Modified pressure (Pa)


Step number (-)


Step edge number (-)


Step niche number (-)


Step heigh (m)


Mean velocity (m s−1)

\(\bar{\mathbf{u }}\)

Mean velocity vector (m s−1)

\(\bar{\mathbf{u }}_c\)

Mean compressive velocity (m s−1)


Step/channel width (m)


Distance to the spillway crest in flow direction (m)


Transversal distance (m)


Maximum transversal distance = w / 2 (m)


Elevation above pseudo-bottom (m)


Volume fraction of fluid 1 (–)


Surface curvature (m−1)


Dynamic viscosity (kg m−1s−2)


Chute angle (°)


Fluid density (kg m−3)


Surface tension (kg s−2)


Shear stress tensor (Pa)


Fluid 1


Fluid 2



Pedro Lopes would like to acknowledge the facilities provided during the 3 months in 2014 as visiting student at FH-Aachen, Germany, from which the experimental results were obtained. All the numerical results here showed were performed on the Centaurus Cluster of the Laboratory for Advanced Computing of University of Coimbra, Portugal. This study had the support of FCT (Portuguese Foundation for Science and Technology) through the Projects UID/MAR/04292/2013 and Grant SFRH/BD/85783/2012, financed by MEC (Portuguese Ministry of Education and Science) and FSE (European Social Fund), under the programs POPH/QREN (Human Potential Operational Programme from National Strategic Reference Framework) and POCH (Human Capital Operational Programme) from Portugal2020.


  1. 1.
    Albadawi A, Donoghue D, Robinson A, Murray D, Delauré Y (2013) Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int J Multi Flow 53:11–28. doi: 10.1016/j.ijmultiphaseflow.2013.01.005 CrossRefGoogle Scholar
  2. 2.
    Amador A (2005) Comportamiento hidráulico de los aliviaderos escalonados en presas de hormigón compactado. Phd thesis (in spanish), UPC, Barcelona, SpainGoogle Scholar
  3. 3.
    Amador A, Sánchez-Juny M, Dolz J, Sánchez-Tembleque F, Puertas J (2004) Velocity and pressure field in skimming flow in stepped spillways. In: F. Yazdandoost and J. Attari Edition (ed.) Intl Conf. on Hydraulics of Dams and River Structures, pp. 179–285. Balkema Publ., The NetherlandsGoogle Scholar
  4. 4.
    Berberović E, van Hinsberg NP, Jakirlić S, Roisman I, Tropea C (2009) Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Phys Rev E 79(3):1–15. doi: 10.1103/PhysRevE.79.036306 Google Scholar
  5. 5.
    Boes RM, Hager WH (2003) Two-phase flow characteristics of stepped spillways. J Hydraul Eng 129(9):661–670. doi: 10.1061/(ASCE)0733-9429 CrossRefGoogle Scholar
  6. 6.
    Bombardelli FA, Meireles I, Matos J (2010) Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ Fluid Mech 11(3):263–288. doi: 10.1007/s10652-010-9188-6 CrossRefGoogle Scholar
  7. 7.
    Brackbill JU, Kothe DB, Zemach C (1991) A continuum method for modeling surface tension. J Comput Phys 100:335–354. doi: 10.1016/0021-9991(92)90240-Y CrossRefGoogle Scholar
  8. 8.
    Bung DB (2011) Developing flow in skimming flow regime on embankment stepped spillways. J Hydraul Res 49(5):639–648. doi: 10.1080/00221686.2011.584372 CrossRefGoogle Scholar
  9. 9.
    Bung DB (2011b) Non-intrusive measuring of air-water flow properties in self-aerated stepped spillway flow. In: Proceedings of 34th IAHR World Congress, 2005:1–8Google Scholar
  10. 10.
    Bung DB (2013) Non-intrusive detection of air water surface roughness in self-aerated chute flows. J Hydraul Res 51(3):322–329. doi: 10.1080/00221686.2013.777373 CrossRefGoogle Scholar
  11. 11.
    Cain P, Wood IR (1981) Measurements of self-aerated flow on a spillway. J Hydraul Div 107(11):1425–1444. doi: 10.1061/(ASCE)0733-9429(1983)109:1(145) Google Scholar
  12. 12.
    Carvalho RF, Amador AT (2009) Physical and numerical investigation of the skimming flow over a stepped spillway. Adv Water Resour Hydraul Eng, pp 1767–1772. doi: 10.1007/978-3-540-89465-0_304
  13. 13.
    Carvalho RF, Lemos CM, Ramos CM (2008) Numerical computation of the flow in hydraulic jump stilling basins. J Hydraul Res 46(6):739–752. doi: 10.3826/jhr.2008.2726 CrossRefGoogle Scholar
  14. 14.
    Carvalho RF, Martins R (2009) Stepped spillway with hydraulic jumps : application of a numerical model to a scale model of a conceptual prototype. J Hydraul Eng ASCE, pp 615–619. doi: 10.1061/(ASCE)HY.1943-7900.0000042
  15. 15.
    Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng 130(7). doi: 10.1115/1.2960953
  16. 16.
    Chanson H (1988) Study of air entrainment and aeration devices on spillway model. Ph.D. thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New ZealandGoogle Scholar
  17. 17.
    Chanson H (1993) Self-aerated flows on chutes and spillways. J Hydraul Eng 119(2):220–243CrossRefGoogle Scholar
  18. 18.
    Chanson H (2002) The hydraulics of stepped chutes and spillway. CRC Press, IncGoogle Scholar
  19. 19.
    Chanson H, Toombes L (2002) Air-water flows down stepped chutes: turbulence and flow. Int J Multi Flow 28(11):1737–1761. doi: 10.1016/S0301-9322(02)00089-7 CrossRefGoogle Scholar
  20. 20.
    Cheng X, Chen Y, Luo L (2006) Numerical simulation of air-water two-phase flow over stepped spillways. Sci China Series E Technol Sci 49(6):674–684. doi: 10.1007/s10288-006-2029-2 CrossRefGoogle Scholar
  21. 21.
    Felder S, Chanson H (2009) Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute. Experim Fluids 47(1):1–18. doi: 10.1007/s00348-009-0628-3 CrossRefGoogle Scholar
  22. 22.
    Felder S, Chanson H (2011) Airwater flow properties in step cavity down a stepped chute. Int J Multi Flow 37(7):732–745. doi: 10.1016/j.ijmultiphaseflow.2011.02.009 CrossRefGoogle Scholar
  23. 23.
    Felder S, Chanson H (2011b) Energy dissipation down a stepped spillway with non-uniform step heights. J Hydraul Eng 137(11):1543–1548. doi: 10.1061/(ASCE)HY.1943-7900.0000455 CrossRefGoogle Scholar
  24. 24.
    Felder S, Chanson H (2014) Airwater flows and free-surface profiles on a non-uniform stepped chute. J Hydraul Res 52(2):253–263. doi: 10.1080/00221686.2013.841780 CrossRefGoogle Scholar
  25. 25.
    Felder S, Chanson H (2015a) Closure to “Aeration, flow instabilities , and residual energy on pooled stepped spillways of embankment dams” by Stefan Felder and Hubert Chanson. J Irrigat Drain Eng 141(2):07014,039. doi: 10.1061/(ASCE)IR.1943-4774.0000627
  26. 26.
    Felder S, Chanson H (2015b) Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters. Exp Thermal Fluid Sci 61(February):66–78. doi: 10.1016/j.expthermflusci.2014.10.009 CrossRefGoogle Scholar
  27. 27.
    Gomes JF (2006) Campo de pressões : condições de incipiência à cavitação em vertedouros em degraus com declividade 1V:0,75H. Phd thesis (in portuguese), Universidade Federal do Rio Grande do Sul. Instituto de Pesquisas Hidráulicas. Programa de Pós-Graduação em Recursos Hídricos e Saneamento AmbientalGoogle Scholar
  28. 28.
    Gonzalez CA (2005) An experimental study of free-surface aeration on embankment stepped chutes. Phd thesis, Faculty of Engineering, Physical Sciences and Architecture, The University of Queensland Brisbane, AustraliaGoogle Scholar
  29. 29.
    Gonzalez CA, Chanson H (2006) Flow resistance and design guidelines for embankment stepped chutes. In: Berga L, Buil J, Bofill E, Cea JD, Carcia-Perez J, Manueco G, Polimon J, Soriano A, Yahue J (eds.) Proc. International Symposium on Dams in the Societies of the 21st Century, ICOLD-SPANCOLD. Balkema Publ., Taylor & Francis Group, Vol. 1, Barcelona, 18-23 June, pp 1015–1022Google Scholar
  30. 30.
    Gonzalez CA, Takahashi M, Chanson H (2008) An experimental study of effects of step roughness in skimming flows on stepped chutes. J Hydraul Res 46(1):24–35. doi: 10.1080/00221686.2008.9521937 CrossRefGoogle Scholar
  31. 31.
    Hager WH (1992) Spillways: shockwaves and air entrainment: review and recommendations. Commission Internationale des Grands BarragesGoogle Scholar
  32. 32.
    Hager WH, Pfister M (2013) Stepped spillways : technical advance from 1900. In: Proceedings of 2013 IAHR World Congress, pp 1–8Google Scholar
  33. 33.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. doi: 10.1016/0021-9991(81)90145-5 CrossRefGoogle Scholar
  34. 34.
    Hunt SL, Kadavy KC (2013) Inception point for embankment dam stepped spillways. J Hydraul Eng 139(2013):60–64. doi: 10.1061/(ASCE)HY.1943-7900.0000644 CrossRefGoogle Scholar
  35. 35.
    Kositgittiwong D, Chinnarasri C, Julien PY (2012) Numerical simulation of flow velocity profiles along a stepped spillway. Proceed Instit Mech Eng Part E J Process Mech Eng. doi: 10.1177/0954408912472172 Google Scholar
  36. 36.
    Leandro J, Bung DB, Carvalho RF (2014) Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods. Exp Fluids 55(5). doi: 10.1007/s00348-014-1732-6
  37. 37.
    Lopes P, Leandro J, Carvalho R, Páscoa P, Martins R (2015) Numerical and experimental investigation of a gully under surcharge conditions. Urban Water J 12(6):468–476. doi: 10.1080/1573062X.2013.831916 CrossRefGoogle Scholar
  38. 38.
    Lopes P, Tabor G, Carvalho RF, Leandro J (2016) Explicit calculation of natural aeration using a Volume-of-Fluid model. Appl Math Model 40(17–18):7504–7515. doi: 10.1016/j.apm.2016.03.033 CrossRefGoogle Scholar
  39. 39.
    Meireles I, Matos J (2009) Skimming flow in the nonaerated region of stepped spillways over embankment dams. J Hydraul Eng 135(8):685–689. doi: 10.1061/(ASCE)HY.1943-7900.0000047 CrossRefGoogle Scholar
  40. 40.
    Meireles I, Renna F, Matos J, Bombardelli F (2012) Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams. J Hydraul Eng 138:870–877. doi: 10.1061/(ASCE)HY.1943-7900.0000591 CrossRefGoogle Scholar
  41. 41.
    Menter F (1993) Zonal two-equation k-\(\omega\) turbulence model for aerodynamic flows. AIAA Paper, pp 1993–2906Google Scholar
  42. 42.
    Nikseresht AH, Talebbeydokhti N, Rezaei MJ (2013) Numerical simulation of two-phase flow on step-pool spillways. Scientia Iranica 20(2):222–230. doi: 10.1016/j.scient.2012.11.013 Google Scholar
  43. 43.
    Ohtsu I, Yasuda Y, Takahashi M (2004) Flow characteristics of skimming flows in stepped channels. J Hydraul Eng 130(9):860–869. doi: 10.1061/(ASCE)0733-9429(2004)130:9(860) CrossRefGoogle Scholar
  44. 44.
    Pearson K (1986) Mathematical contributions to the theory of evolution. III. regression, heredity and panmixia. Philosop Trans Royal Soc London 187:253–318. doi: 10.1098/rsta.1896.0007 CrossRefGoogle Scholar
  45. 45.
    Pegram GGS, Officer AK, Mottram SR (1999) Hydraulics of skimming flow on modeled stepped spillways. J Hydraul Eng 125(5):500–510. doi: 10.1061/(ASCE)0733-9429(1999)125:5(500) CrossRefGoogle Scholar
  46. 46.
    Pfister M, Chanson H (2012) Scale effects in physical hydraulic engineering models. J Hydraul Res 50(2):244–246. doi: 10.1080/00221686.2012.654671 CrossRefGoogle Scholar
  47. 47.
    Pfister M, Hager WH (2011) Self-entrainment of air on stepped spillways. Int J Multi Flow 37(2):99–107. doi: 10.1016/j.ijmultiphaseflow.2010.10.007 CrossRefGoogle Scholar
  48. 48.
    Rahimzadeh H, Maghsoodi R, Sarkardeh H, Tavakkol S (2012) Simulating flow over circular spillways by using different turbulence models. Eng Appl Comput Fluid Mech 6(1):100–109. doi: 10.1080/19942060.2012.11015406 Google Scholar
  49. 49.
    Rice CE, Kadavy KC (1996) Model study of a roller compacted concrete stepped spillway. J Hydra Eng 122(6):292–297. doi: 10.1061/(ASCE)0733-9429(1996)122:6(292) CrossRefGoogle Scholar
  50. 50.
    Salome: SALOME 6 Platform Download (2011).
  51. 51.
    Simões A, Schuls H, Porto R, Gulliver J (2013) Free-surface profiles and turbulence characteristics in skimming flows along stepped chutes. J Water Res Hydra Eng 2(1):1–12Google Scholar
  52. 52.
    Ubbink O (1997) Numerical prediction of two fluid systems with sharp interfaces. Phd thesis, Imperial College of Science, UKGoogle Scholar
  53. 53.
    Valero D, Bung DB (2016) Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows. Instabilities growth, entrapped air and influence on the self-aeration onset. Int J Multi Flow 84:66–74. doi: 10.1016/j.ijmultiphaseflow.2016.04.012 CrossRefGoogle Scholar
  54. 54.
    Wang H, Chanson H (2015) Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water J 12(6):1–17. doi: 10.1080/1573062X.2013.847464 CrossRefGoogle Scholar
  55. 55.
    Willmott CJ (1981) On the validation of models. Phys Geograph 2(2):184–194. doi: 10.1080/02723646.1981.10642213 Google Scholar
  56. 56.
    Witt A, Gulliver J, Shen L (2015) Simulating air entrainment and vortex dynamics in a hydraulic jump. Int J Multi Flow. doi: 10.1016/j.ijmultiphaseflow.2015.02.012
  57. 57.
    Yasuda Y, Chanson H (2003) Micro- and macro-scopic study of two-phase flow on a stepped chute. In: Proceedings of the 30th IAHR Biennial Congress, vol. vol. D, pp. 695–702. Thessaloniki, GreeceGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.MARE - Marine and Environmental Sciences CentreFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
  2. 2.Department of Civil EngineeringUniversity of CoimbraCoimbraPortugal
  3. 3.Chair of Hydrology and River Basin ManagementTechnical University of MunichMunichGermany
  4. 4.Hydraulic Engineering Section, FH AachenUniversity of Applied SciencesAachenGermany

Personalised recommendations