Environmental Fluid Mechanics

, Volume 16, Issue 1, pp 193–208 | Cite as

Computation of the Basset force: recent advances and environmental flow applications

  • Patricio A. Moreno-Casas
  • Fabián A. Bombardelli
Original Article


When numerically integrating the equation describing the motion of a particle in a carrier fluid, the computation of the Basset (history) force becomes by far the most expensive and cumbersome, as opposed to forces such as drag, virtual mass, lift, buoyancy and Magnus. The expression representing the Basset force constitutes an integro-differential term whose standard integrand is singular when the upper integration limit is enforced. These shortcomings have led some researchers to either disregard or outright neglect the contribution of the Basset force to the total force, even in those cases where it may yield to important errors in the determination of particle trajectories in the computation of sediment transport and other environmental flows. This work is devoted to review four recent contributions associated with the computation of the Basset force, and to compare their proposals to diminish the inherent problems of the term integration. All papers, except one, use variants of a window-based approach; the most recent contribution, in turn, employs a specialized quadrature to increase the accuracy of the computation. An analysis was carried out to compare CPU computation times, rates of convergence and accuracy of the approximations versus a known analytical solution. All methods provide sound solutions to the issues associated with the computation of the Basset force; further, a road map to select the best solution for each given problem is provided. Finally, we discuss the implications of the techniques for the simulation of sediment transport processes and other environmental flows.


History force Basset force Maxey–Riley equation Quadrature Accuracy Computation time 


  1. 1.
    Amador A, Sanchez-Juny M, Dolz J (2006) Characterization of the nonaerated flow region in a stepped spillway by PIV. J Fluids Eng 128(6):1266–1273CrossRefGoogle Scholar
  2. 2.
    Armenio V, Fiorotto V (2001) The importance of the forces acting on particles in turbulent flows. Phys Fluids 13(8):2437–2440CrossRefGoogle Scholar
  3. 3.
    Ali BA, Pushpavanam S (2011) Analysis of unsteady gas-liquid flows in a rectangular tank: comparison of Euler-Eulerian and Euler-Lagrangian simulations. Int J Multiph Flow 37:268–277CrossRefGoogle Scholar
  4. 4.
    Bombardelli FA, González AE, Niño YI (2008) Computation of the particle Basset force with a fractional-derivative approach. J Hydraul Eng ASCE 134(10):1513–1520CrossRefGoogle Scholar
  5. 5.
    Bombardelli FA, Jha S (2009) Hierarchical modeling of the dilute transport of suspended sediment in open channels. Environ Fluid Mech 9(2):207–235. doi: 10.1007/s10652-008-9091-6 CrossRefGoogle Scholar
  6. 6.
    Bombardelli FA, Chanson H (2009) Progress in the observation and modeling of turbulent multi-phase flows. Environ Fluid Mech 9(2):121–123CrossRefGoogle Scholar
  7. 7.
    Bombardelli FA, Meireles I, Matos J (2011) Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ Fluid Mech 11:263–288CrossRefGoogle Scholar
  8. 8.
    Bombardelli FA, Moreno PA (2012) Exchange at the bed sediments-water column interface. In: Gualtieri C, Mihailovic DT (eds) Fluid mechanics of environmental interfaces, Chapter 8, 2nd edn. Taylor & Francis Group, London, pp 221–253CrossRefGoogle Scholar
  9. 9.
    Brunner H, Tang T (1989) Polynomial spline collocation methods for the nonlinear Basset equation. Comput Math Appl 18(5):449–457CrossRefGoogle Scholar
  10. 10.
    Brush JS, Ho HW, Yen BC (1964) Acceleration motion of sphere in a viscous fluid. J Hydraul Div 90:149–160Google Scholar
  11. 11.
    Crowe C, Sommerfeld M, Tsuji M (2011) Multiphase flows with droplets and particles. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. 12.
    Daitche A (2013) Advection of inertial particles in the presence of the history force: higher order numerical schemes. J Comput Phys 254:93–106CrossRefGoogle Scholar
  13. 13.
    Dorgan A, Loth E (2007) Efficient calculation of the history force at finite Reynolds numbers. Int J Multiph Flow 33:833–848CrossRefGoogle Scholar
  14. 14.
    Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer, BerlinCrossRefGoogle Scholar
  15. 15.
    García MH (2008) Sedimentation engineering: processes, measurements, modeling, and practice. ASCE Manuals and Reports on Engineering Practice N° 110, RestonCrossRefGoogle Scholar
  16. 16.
    Gatignol R (1983) The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J Méc Théor 1:143–160Google Scholar
  17. 17.
    González AE, Bombardelli FA, Nino YI (2006) Improving the prediction capability of numerical models for particle motion in water bodies. In: Proceedings of the 7th International Conference on HydroScience and Engineering ICHE 2006, Philadelphia, USAGoogle Scholar
  18. 18.
    González AE (2008) Coupled numerical modeling of sediment transport near the bed using a two-phase flow approach. Ph.D. Thesis, University of California, Davis, p 188Google Scholar
  19. 19.
    Kim I, Elghobashi S, Sirignana WB (1998) On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J Fluid Mech 367:221–253CrossRefGoogle Scholar
  20. 20.
    Lawrence CJ, Mei R (1995) Long-time behavior of the drag on a body in impulsive motion. J Fluid Mech 283:307–327CrossRefGoogle Scholar
  21. 21.
    Lee HY, Hsu IS (1994) Investigation of saltating particle motions. J Hydraul Eng ASCE 120:831–845CrossRefGoogle Scholar
  22. 22.
    Loth E, Dorgan A (2009) An equation of motion for particles of finite Reynolds number and size. Environ Fluid Mech 9(2):187–206CrossRefGoogle Scholar
  23. 23.
    Lovalenti PM, Brady JF (1993) The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J Fluid Mech 256:561–605CrossRefGoogle Scholar
  24. 24.
    Lukerchenko N, Chara Z, Vlasak P (2006) 2D Numerical model of particle-bed collision in fluid-particle flows over bed. J Hydraul Res IAHR 44(1):70–78CrossRefGoogle Scholar
  25. 25.
    Lukerchenko N, Piatsevich S, Chara Z, Vlasak P (2009) 3D numerical model of spherical particle saltation in a channel with a rough fixed bed. J Hydrol Hydromech 57(2):100–112CrossRefGoogle Scholar
  26. 26.
    Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889CrossRefGoogle Scholar
  27. 27.
    Mei R, Adrian RJ (1992) Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J Fluid Mech 237:323–341CrossRefGoogle Scholar
  28. 28.
    Michaelides EE (2006) Particles, bubbles and drops: their motion, heat and mass transfer. World Scientific Publishing Co, HackensackCrossRefGoogle Scholar
  29. 29.
    Moorman RW (1955) Motion of a spherical particle in the accelerated portion of free-fall. Doctor of Philosophy Dissertation, University of IowaGoogle Scholar
  30. 30.
    Mordant N, Pintot JF (2000) Velocity measurement of a settling sphere. Eur Phys J B 18:343–353CrossRefGoogle Scholar
  31. 31.
    Moreno PA, Bombardelli FA (2012) 3D numerical simulation of particle-particle collisions in saltation mode near stream beds. Acta Geophys 60:1661–1688CrossRefGoogle Scholar
  32. 32.
    Niño Y, García M, Ayala L (1994) Gravel saltation. Experiments. Water Resour Res 30(6):1907–1914CrossRefGoogle Scholar
  33. 33.
    Niño Y, García M (1994) Gravel saltation. 2. Modeling. Water Resour Res 30(6):1915–1924CrossRefGoogle Scholar
  34. 34.
    Niño Y, García M (1998) Experiments on saltation of sand in water. J Hydraul Eng 124(10):1014–1025CrossRefGoogle Scholar
  35. 35.
    Niño Y, García M (1998) Using Lagrangian particle saltation observations for bed-load sediment transport modelling. Hydrol Process 12:1197–1218CrossRefGoogle Scholar
  36. 36.
    OldhamY Spanier M (1974) The fractional calculus. Academic, New YorkGoogle Scholar
  37. 37.
    Parmar M, Haselbacher A, Balachandar S (2011) Generalized Basset-Boussinesq-Oseen equation for unsteady forces on a sphere in a compressible flow. Phys Rev Lett 106:084501CrossRefGoogle Scholar
  38. 38.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, New YorkGoogle Scholar
  39. 39.
    Prosperetti A, Tryggvason G (2007) Computational methods for multiphase flow. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. 40.
    Rechiman LM, Dellavalle D, Bonetto FJ (2013) Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers. Phys Rev E 87:063004CrossRefGoogle Scholar
  41. 41.
    Sangani AS, Zhang DZ, Prosperetti A (1991) The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion. Phys Fluids 3(12):2955–2970CrossRefGoogle Scholar
  42. 42.
    Schmeeckle MW, Nelson JM (2003) Direct numerical simulation of bed-load transport using a local, dynamic boundary condition. Sedimentology 50:279–301CrossRefGoogle Scholar
  43. 43.
    Sridhar G, Katz J (1995) Drag and lift forces on microscopic bubbles entrained by a vortex. Phys Fluids 7(2):389–399CrossRefGoogle Scholar
  44. 44.
    Sungkorn R, Derksen JJ, Khinast JG (2012) Euler-Lagrange modeling of a gas-liquid stirred reactor with consideration of bubble breakage and coalescence. AIChE J 58(5):1356–1370CrossRefGoogle Scholar
  45. 45.
    Tatom FB (1988) The Basset term as a semiderivative. Appl Sci Res 45:283–285CrossRefGoogle Scholar
  46. 46.
    van Hinsberg MAT, Boonkkamp JHMT, Clercx HJH (2011) An efficient, second order method for the approximation of the Basset history force. J Comput Phys 230(4):1465–1478CrossRefGoogle Scholar
  47. 47.
    Wakaba L, Balachandar S (2005) History force on a sphere in a weak shear flow. Int J Multiph Flow 31:996–1014CrossRefGoogle Scholar
  48. 48.
    Wiberg P, Smith JD (1985) A theoretical model for saltating grains in water. J Geophys Res 90:7341–7354CrossRefGoogle Scholar
  49. 49.
    Wood IR, Jenkins BS (1973) A numerical study of the suspension of a non-buoyant particle in a turbulent stream. In: Proceedings of IAHR internatinal symposium on river mechanics, vol 1, pp 431–442Google Scholar
  50. 50.
    Yen BC (1992) Sediment fall velocity in oscillating flow. Water resources environmental engineering resources. Report 11. Dept. of Civil Eng, University of VirginiaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Patricio A. Moreno-Casas
    • 1
    • 2
  • Fabián A. Bombardelli
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of California, DavisDavisUSA
  2. 2.Facultad de Ingeniería y Ciencias AplicadasUniversidad de los AndesSantiagoChile

Personalised recommendations