Skip to main content
Log in

Curvature-induced secondary flow in submarine channels

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The curvature-driven secondary flow in sinuous submarine channels has been a subject of considerable interest and controversy. Here, results from numerical model studies involving saline flow in laboratory-scale channels are presented. A 3D finite volume model of density and turbidity currents is used and simulations are run with different inflow discharges and channel-axis slopes. The simulation results show strong influence of bend wave length, channel gradient, confinement and cross sectional shape on the structure of secondary flow in submarine channels. Major findings are: (i) reversal of secondary flow in submarine channels is strongly associated with a tight bend characterized by a smaller wave length to width ratio or larger wave number, (ii) for the same inflow condition and planform characteristics, a trapezoidal channel cross section is more favorable to secondary flow reversal than a rectangular cross section, (iii) lateral convection resulting from the interaction between in-channel and overbank flows leads to the reversal of secondary flow in an unconfined channel at a lower channel slope than in a confined channel with the same dimensions, (iv) flow discharge has only nominal effect on the secondary flow in submarine channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abad JD, Garcia MH (2009a) Experiments in a high-amplitude kinoshita meandering channel: 1. implications of bend orientation on mean and turbulent flow structure. Water Resour Res 45(2):W02401. doi:10.1029/2008WR007016

    Google Scholar 

  2. Abad JD, Garcia MH (2009b) Experiments in a high-amplitude kinoshita meandering channel: 2. implications of bend orientation on bed morphodynamics. Water Resour Res 45(2):W02402

    Google Scholar 

  3. Abad JD, Sequeiros OE, Spinewine B, Pirmez C, Garcia MH, Parker G (2011) Secondary current of saline underflow in a highly meandering channel: experiments and theory. J Sediment Res 81(11):787–813. doi:10.2110/jsr.2011.61

    Article  Google Scholar 

  4. Amos KJ, Peakall J, Bradbury PW, Roberts M, Keevil G, Gupta S (2010) The influence of bend amplitude and planform morphology on flow and sedimentation in submarine channels. Mar Petrol Geol 27(7):1431–1447. doi:10.1016/j.marpetgeo.2010.05.004

    Article  Google Scholar 

  5. Cebeci T, Bradshaw P (1977) Momentum transfer in boundary layers. Hemisphere Publishing Corp. and McGraw-Hill Book Co., Washington DC and New York, p 1

    Google Scholar 

  6. Clark J, Pickering K (1996) Architectural elements and growth patterns of submarine channels: applications to hydrocarbon exploration. AAPG Bull 80:194–221

    Google Scholar 

  7. Corney R, Peakall J, Parsons D, Elliott L, Amos K, Best J, Keevil G, Ingham D (2006) The orientation of helical flow in curved channels. Sedimentology 53:249–257

    Article  Google Scholar 

  8. Corney RKT, Peakall J, Parsons DR, Elliott L, Best JL, Thomas RE, Keevil GM, Ingham DB, Amos KJ (2008) Reply to discussion of Imran et al. on “The orientation of helical flow in curved channels” by Corney et al., sedimentology, 53, 249–257. Sedimentology 55(1):241–247. doi:10.1111/j.1365-3091.2007.00925.x

    Google Scholar 

  9. Cossu R, Wells MG (2010) Coriolis forces influence the secondary circulation of gravity currents flowing in large-scale sinuous submarine channel systems. Geophys Res Lett 37(17):L17603. doi:10.1029/2010GL044296

    Article  Google Scholar 

  10. Dorrell RM, Darby SE, Peakall J, Sumner EJ, Parsons DR, Wynn RB (2013) Superelevation and overspill control secondary flow dynamics in submarine channels. J Geophys Res 118:3895–3915. doi:10.1002/jgrc.20277

    Article  Google Scholar 

  11. Ellison T, Turner J (1959) Turbulent entrainment in stratified flows. J Fluid Mech 6:423–448

    Article  Google Scholar 

  12. Engelund F (1974) Flow and bed topography in channel bends. J Hydraul Div 100:1631–1648

    Google Scholar 

  13. Ferziger J, Peric M (1999) Computational methods for fluid dynamics, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  14. Garcia M, Parker G (1993) Experiments on the entrainment of sediment into suspension by a dense bottom current. J Geophys Res 98(C3):4793–4807. doi:10.1029/92JC02404

    Article  Google Scholar 

  15. Gottlieb L (1976) Three-dimensional flow pattern and bed topography in meandering channels, Ph.D. Thesis, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark

  16. Henkes RA, Flugt WM, Hoogendoorn CJ (1991) Natural convection flow in a square cavity calculated with low-Reynolds number turbulence models. Int J Heat Mass Transf 34:1543–1557

    Article  Google Scholar 

  17. Huang H, Imran J, Pirmez C (2005) Numerical model of turbidity currents with a deforming bottom boundary. J Hydraul Eng 131:283–293

    Article  Google Scholar 

  18. Huang H, Imran J, Pirmez C (2007) Numerical modeling of poorly sorted depositional turbidity currents. J Geophys Res 112:C01014. doi:10.1029/2006JC003,778

    Google Scholar 

  19. Huang H, Imran J, Pirmez C (2012) The depositional characteristics of turbidity currents in submarine sinuous channels. Mar Geol 329—-331:93–102. doi:10.1016/j.margeo.2012.08.003

    Article  Google Scholar 

  20. Ikeda S, Nishimura T (1986) Flow and bed profile in meandering sand-silt rivers. J Hydraul Eng 112(7):562–576

    Article  Google Scholar 

  21. Ikeda S, Parker G, Sawai K (1981) Bend theory of river meanders part 1. linear development. J Fluid Mech 112:363–377

    Article  Google Scholar 

  22. Imran J, Parker G, Pirmez C (1999) A nonlinear model of flow in meandering submarine and subaerial channels. J Fluid Mech 400:295–331

    Article  Google Scholar 

  23. Imran J, Islam M, Huang H, Kassem A, Pirmez C, Dickerson J, Parker G (2007) Helical flow couplets in submarine gravity underflows. Geology 35(7):659–662

    Article  Google Scholar 

  24. Imran J, Islam MA, Kassem A (2008) ”The orientation of helical flow in curved channels” by Corney et al., Sedimentology, vol. 53, pp. 249257 discussion. Sedimentology 55(1):235–239. doi:10.1111/j.1365-3091.2007.00924.x

    Article  Google Scholar 

  25. Islam M (2007) Experimental modeling of gravity underfow in submarine channels, Ph.D Thesis, University of South Carolina

  26. Islam M, Imran J, Pirmez C, Cantelli A (2008) Flow splitting modifies the helical motion in submarine channels. Geophys Res Lett 35:L22603. doi:10.1029/2008GL034,995

    Article  Google Scholar 

  27. Janocko M, Cartigny M, Nemec W, Hansen E (2013) Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations. Mar Petrol Geol 41:222–249. doi:10.1016/j.marpetgeo.2012.08.012

    Article  Google Scholar 

  28. Johannesson H, Parker G (1989a) Linear theory of river meanders. In: Ikeda S, Parker G (eds) River Engineering, vol 12. AGU Monograph, Washington DC, pp 181–214

    Google Scholar 

  29. Johannesson H, Parker G (1989b) Secondary flow in mildly sinuous channel. J Hydraul Eng 115:289–308

    Article  Google Scholar 

  30. Kassem A, Imran J (2004) Three-dimensional modeling and analysis of density current, II. Flow in sinuous confined and unconfined channels. J Hydraul Res 42(6):591–602

    Article  Google Scholar 

  31. Keevil G, Peakall J, Best J, Amos K (2006) Flow structure in sinuous submarine channels: velocity and turbulence structure of an experimental submarine channel. Mar Geol 229:241–257

    Article  Google Scholar 

  32. Keevil GM, Peakall J, Best JL (2007) The influence of scale, slope and channel geometry on the flow dynamics of submarine channels. Mar Petrol Geol 24(6–9):487–503. doi:10.1016/j.marpetgeo.2007.01.009

    Article  Google Scholar 

  33. Kitanidis PK, Kennedy JF (1984) Secondary current and river-meander formation. J Fluid Mech 144(1):217–229

    Article  Google Scholar 

  34. Kolla V, Posamentier H, Wood L (2007) Deep-water and fluvial sinuous channels-characteristics, similarities and dissimilarities, and modes of formation. Mar Petrol Geol 24(6–9):388–405. doi:10.1016/j.marpetgeo.2007.01.007

    Article  Google Scholar 

  35. Komar P (1969) The channelized flow of turbidity currents with application to monterey deep-sea fan channel. J Geophys Res 74:4544–4557

    Article  Google Scholar 

  36. Mohrig D, Buttles J (2007) Deep turbidity currents in shallow channels. Geology 35(2):155–158

    Article  Google Scholar 

  37. Nakajima T, Peakall J, McCaffrey WD, Paton DA, Thompson PJP (2009) Outer-bank bars: a new intra-channel architectural element within sinuous submarine slope channels. J Sediment Res 79:872–886. doi:10.2110/jsr.2009.094

    Article  Google Scholar 

  38. Parsons DR, Peakall J, Aksu AE, Flood RD, Hiscott RN, Beşiktepe Ş, Mouland D (2010) Gravity-driven flow in a submarine channel bend: direct field evidence of helical flow reversal. Geology 38(12):1063–1066

    Article  Google Scholar 

  39. Peakall J, McCaffrey B, Kneller B (2000) A process model for the evolution and architecture of sinuous submarine channels. J Sediment Res 70:434–448

    Article  Google Scholar 

  40. Pirmez C (1994) Growth of a submarine meandering channel-levee system on the Amazon Fan, Ph.D. Thesis, Columbia University. USA, New York

  41. Pirmez C, Imran J (2003) Reconstruction of turbidity currents in Amazon channel. Mar Petrol Geol 20(6–8):823–849. doi:10.1016/j.marpetgeo.2003.03.005

    Article  Google Scholar 

  42. Pittaluga MB, Nobile G, Seminara G (2009) A nonlinear model for river meandering. Water Resour Res 45(4):W04432. doi:10.1029/2008WR007298

    Google Scholar 

  43. Rodi W (1984) Turbulence models and their applications in hydraulics, Monograph, International Association for Hydraulic Research, Delft, The Netherlands, Monograph, Delft, The Netherlands

  44. Rozovskii I (1961) Flow of water in bends of open channels, Translation OTS 60–51133, Y. U.S. Department of Commerce, Washington, DC, Prushansky, Office of Technical Service

  45. Serchi GF, Peakall J, Ingham DB, Burns AD (2011) A unifying computational fluid dynamics investigation on the river-like to river-reversed secondary circulation in submarine channel bends. J Geophys Res 116:C06012

    Google Scholar 

  46. Stacey M, Bowen A (1988) The vertical structure of turbidity currents and a necessary condition for self-maintenance. J Geophys Res 93(C4):3543–3553

    Article  Google Scholar 

  47. Straub K, Mohrig D, McElroy B, Buttles J, Pirmez C (2008) Interactions between turbidity currents and topography in aggrading sinuous submarine channels: a laboratory study. GSA Bull 120:368–385

    Article  Google Scholar 

  48. Wynn RB, Cronin BT, Peakall J (2007) Sinuous deep-water channels: genesis, geometry and architecture. Mar Petrol Geol 24(6–9):341–387. doi:10.1016/j.marpetgeo.2007.06.001

    Article  Google Scholar 

Download references

Acknowledgments

Funding supports from the National Science Foundation Marine Geology Program (Grant number 1061244) and Shell International Exploration and Production Company to J. Imran are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasim Imran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezz, H., Imran, J. Curvature-induced secondary flow in submarine channels. Environ Fluid Mech 14, 343–370 (2014). https://doi.org/10.1007/s10652-014-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-014-9345-4

Keywords

Navigation