Environmental Fluid Mechanics

, Volume 14, Issue 4, pp 711–742 | Cite as

Analytical solutions of nonlinear and variable-parameter transport equations for verification of numerical solvers

Original Article

Abstract

All numerical codes developed to solve the advection–diffusion-reaction (ADR) equation need to be verified before they are moved to the operational phase. In this paper, we initially provide four new one-dimensional analytical solutions designed to help code verification; these solutions are able to handle the challenges of the scalar transport equation including nonlinearity and spatiotemporal variability of the velocity and dispersion coefficient, and of the source term. Then, we present a solution of Burgers’ equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. By the end of the paper, we solve hypothetical test problems for each of the solutions numerically, and we use the derived analytical solutions for code verification. Finally, we provide assessments of results accuracy based on well-known model skill metrics.

Keywords

Advection–diffusion-reaction equation Advection–diffusion-equation (ADE) Analytical solution Nonlinear partial differential equation (NPDE)  Scalar transport equation Verification and validation Model skill assessment 

References

  1. 1.
    Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema Publishers, LeidenGoogle Scholar
  2. 2.
    Aral M, Liao B (1996) Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J Hydrol Eng 1(1):20–32Google Scholar
  3. 3.
    Ateljevich E, Zamani K, Bombardelli FA, Anderson J (2011) Using software quality and algorithm testing to verify a one-dimensional transport model. In: ASCE/EWRI World Environmental and Water Resources Congress, Palm Springs, CAGoogle Scholar
  4. 4.
    Barry DA, Sposito G (1989) Analytical solution of a convection–dispersion model with time-dependent transport coefficients. Water Resour Res 25:2407–2416. doi:10.1029/WR025i012p02407 Google Scholar
  5. 5.
    Basha HA, El-Habel FS (1993) Analytical solution of the one-dimensional time-dependent transport equation. Water Resour Res 29:3209–3214. doi:10.1029/93WR01038 Google Scholar
  6. 6.
    Bear J (1972) Dynamics of flow in porous media. Elsevier, New YorkGoogle Scholar
  7. 7.
    Bedford KW (1985) Selection of turbulence and mixing parameterization for estuary water quality models. US Army Corps of Engineers, Environmental Impact Research Program, Paper EL-85-2, Vicksburg, MS, p 153Google Scholar
  8. 8.
    Boltzmann L (1894) Zur integration der diffusionsgleichung bei variablen diffusionkoeffizienten. Annalen der Physik und Chemie 53:959–964Google Scholar
  9. 9.
    Bombardelli FA, Jha SK (2009) Hierarchical modeling of the dilute transport of suspended sediment in open channels. Environ Fluid Mech 9(2):207–236Google Scholar
  10. 10.
    Cannon JR (2008) The one-dimensional heat equation, encyclopedia of mathematics and its applications. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  12. 12.
    Chen JS, Chen JT, Liu CW, Liang CP, Lin CW (2011) Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions. J Hydrol 405(3–4):522–531. doi:10.1016/j.jhydrol.2011.06.002 Google Scholar
  13. 13.
    Chen JS, Liu CW, Hsu HT, Liao CM (2003) A Laplace transform power series solution for solute transport in a convergent flow field with scale-dependent dispersion. Water Resour Res 39(8). doi:10.1029/2003WR002299
  14. 14.
    Chen JS, Liu CW, Liao CM (2003) Two-dimensional Laplace-transformed power series solution for solute transport in a radially convergent flow field. Adv Water Resour 26(10):1113–1124. doi:10.1016/S0309-1708(03)00090-3
  15. 15.
    Chen JS, Liu YH, Liang CP, Liu CW, Lin CW (2011) Exact analytical solutions for two-dimensional advection–dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition. Adv Water Resour 34(3):365–374. doi:10.1016/j.advwatres.2010.12.008 Google Scholar
  16. 16.
    Chen JS, Ni CF, Liang CP (2008) Analytical power series solutions to the two-dimensional advection–dispersion equation with distance-dependent dispersivities. Hydrol Process 22(24):4670–4678. doi:10.1002/hyp.7067 Google Scholar
  17. 17.
    Chen JS, Ni CF, Liang CP, Chiang CC (2008) Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity. J Hydrol 362(1–2):142–149. doi:10.1016/j.jhydrol.2008.08.020 Google Scholar
  18. 18.
    Cho CM (1971) Convective transport of ammonium with nitrification in soil. Can J Soil Sci 51(3):339–350. doi:10.4141/cjss71-047 Google Scholar
  19. 19.
    Cole JD (1951) On a quasilinear parabolic equation occurring in aerodynamics. Quart Appl Math 9:225–236Google Scholar
  20. 20.
    Costa CP, Vilhena MT, Moreira DM, Tirabassi T (2006) Semi-analytical solution of the steady three-dimensional advection–diffusion equation in the planetary boundary layer. Atmos Environ 40(29):5659–5669. doi:10.1016/j.atmosenv.2006.04.054 Google Scholar
  21. 21.
    Crank J (1979) The mathematics of diffusion, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Defant A (1925) Gezeiten probleme des meers in landnahe [Problems of ocean tides near the land]. Probleme der Kosmischen Physik 6, H. Grand, HamburgGoogle Scholar
  23. 23.
    Demetriou E, Christou MA, Sophocleous C (2007) On the classification of similarity solutions of a two-dimensional diffusion–advection equation. Appl Math Comput 187(2):1333–1350. doi:10.1016/j.amc.2006.09.043 CrossRefGoogle Scholar
  24. 24.
    Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11):919–927. doi:10.1061/(ASCE)0733-9429 (2001) 127:11 (919)Google Scholar
  25. 25.
    Ellsworth TR, Butters GL (1993) 3-Dimensional analytical solutions to the advection–dispersion equation in arbitrary Cartesian coordinates. Water Resour Res 29(9):3215–3225. doi:10.1029/93WR01293 CrossRefGoogle Scholar
  26. 26.
    Fischer BH, List JE, Koh RC, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, New YorkGoogle Scholar
  27. 27.
    Fleenor WE, Bombardelli FA (2013) Simplified 1-D hydrodynamics modeling of the Sacramento—San Joaquin Delta—sea level rise and water diversion effects. San Francisco Estuary and Watershed Science 11(4)Google Scholar
  28. 28.
    Fourier J (1822) The analytical theory of heat. [translated with notes by Freeman A 1955]. Dover, New YorkGoogle Scholar
  29. 29.
    Guerrero JS, Pimentel LCG, Skaggs TH, van Genuchten MT (2009) Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique. Int J Heat Mass Transfer 52(13–14):3297–3304. doi:10.1016/j.ijheatmasstransfer.2009.02.002 Google Scholar
  30. 30.
    Guerrero JS, Skaggs TH (2010) Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients. J Hydrol 390(1–2):57–65. doi:10.1016/j.jhydrol.2010.06.030 Google Scholar
  31. 31.
    Hills RG, Warrick AW (1993) Burgers’ equation: a solution for soil water flow in a finite length. Water Resour Res 29(4):1179–1184CrossRefGoogle Scholar
  32. 32.
    Hopf E (1950) The partial differential equation \(u_t +uu_x =\mu u_{xx} \). Commun Pure Appl Math 3:201–230CrossRefGoogle Scholar
  33. 33.
    Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection–diffusion-reaction equation. Springer Series in Computational Mathematics 33. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Jaiswal DK, Kumar A, Kumar N, Singh MK (2011) Solute transport along temporally and spatially dependent flows through horizontal semi-infinite media: dispersion proportional to square of velocity. J Hydrol Eng 16(3):228–238. doi:10.1061/(ASCE)HE.1943-5584.0000312
  35. 35.
    Jaiswal DK, Kumar A, Kumar N, Yadav RR (2009) Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media. J Hydro-environ Res 2(4):254–263. doi:10.1016/j.jher.2009.01.003 CrossRefGoogle Scholar
  36. 36.
    Jha SK, Bombardelli FA (2010) Toward two-phase flow modeling of nondilute sediment transport in open channels. J Geophys Res 115:F03015. doi:10.1029/2009JF001347 Google Scholar
  37. 37.
    Jha SK, Bombardelli FA (2011) Theoretical/numerical model for the transport of non-uniform suspended sediment in open channels. Adv Water Resour 34(5):577–591. doi:10.1016/j.advwatres.2011.02.00 CrossRefGoogle Scholar
  38. 38.
    Khakpour M, Vafai K (2008) A comprehensive analytical solution of macromolecular transport within an artery. Int J Heat Mass Transfer 51(11–12):2905–2913. doi:10.1016/j.ijheatmasstransfer.2007.09.019 Google Scholar
  39. 39.
    Khalifa ME (2003) Some analytical solutions for the advection–dispersion equation. Appl Math Comput 139:299–310. doi:10.1016/S0096-3003(02)00181-9 CrossRefGoogle Scholar
  40. 40.
    Kirchhoff GA (1894) Vorlesungen über mathematische Physik. Band IV: Theorie der Wärme, Hersusgegeben von Max Planck. An der Universitat, BerlinGoogle Scholar
  41. 41.
    Knupp PM, Salari K (2003) Verification of computer codes in computational science and engineering. Chapman & Hall/CRC, London/Boca Raton, FloridaGoogle Scholar
  42. 42.
    Kumar A, Jaiswal DK, Kumar N (2009) Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain. J Earth Syst Sci 118(5):539–549CrossRefGoogle Scholar
  43. 43.
    Kumar A, Jaiswal DK, Kumar N (2010) Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. J Hydrol 380(3–4):330–337. doi:10.1016/j.jhydrol.2009.11.008 CrossRefGoogle Scholar
  44. 44.
    Kumar N, Kumar M (1998) Solute dispersion along unsteady groundwater flow in a semi-infinite aquifer. Hydrol Earth Syst Sci 2(1):93–100CrossRefGoogle Scholar
  45. 45.
    Lassey KR (1988) Unidimensional solute transport incorporating equilibrium and rate-limited isotherms with first-order loss: 1. Model conceptualization and analytical solutions. Water Resour Res 24(3):343–350. doi:10.1029/WR024i003p00343 CrossRefGoogle Scholar
  46. 46.
    Leij FJ, Priesack E, Schaap MG (2000) Solute transport modeled with Green’s functions with application to persistent solute sources. J Contam Hydrol 41(1):155–173. doi:10.1016/S0169-7722(99)00062-5 Google Scholar
  47. 47.
    Leij FJ, van Genuchten MT (2000) Analytical modeling of nonaqueous phase liquid dissolution with Green’s functions. Transp Porous Media 38:141–166. doi:10.1023/A:1006611200487
  48. 48.
    LeVeque JR (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. 49.
    Logan JD (1996) Solute transport in porous media with scale-dependent dispersion and periodic boundary. J Hydrol 184(3–4):261–276CrossRefGoogle Scholar
  50. 50.
    Logan JD (2001) Transport modeling in hydrogeochemical systems, interdisciplinary applied mathematics, vol 15. Springer, BerlinCrossRefGoogle Scholar
  51. 51.
    Logan JD (2008) An introduction to nonlinear partial differential equations. Pure and applied mathematics, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  52. 52.
    Massoudieh A, Bombardelli FA, Ginn TR (2010) A biogeochemical model of contaminant fate and transport in river waters and sediments. J Contam Hydrol 112(1–4):103–117. doi:10.1016/j.jconhyd.2009.11.001 CrossRefGoogle Scholar
  53. 53.
    McRae GJ, Goodin WR, Seinfeld JH (1982) Numerical solution of the atmospheric diffusion equation for chemically reacting flow. J Comput Phys 45:1–42CrossRefGoogle Scholar
  54. 54.
    Mohsen MFN, Pinder GF (1984) Analytical solution of the transport equation using a polynomial initial condition for verification of numerical simulators. Int J Numer Meth Fluids 4:701–707Google Scholar
  55. 55.
    Momani S, Yildirim A (2010) Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He’s homotopy perturbation method. Inte J Computer Math 87(5):1057–1065. doi:10.1080/00207160903023581 Google Scholar
  56. 56.
    Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New YorkGoogle Scholar
  57. 57.
    Neelz S (2006) Limitations of an analytical solution for advection-diffusion with spatially variable coefficients. Commun Numer Methods Eng 22:387–396. doi:10.1002/cnm.820 CrossRefGoogle Scholar
  58. 58.
    Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. 59.
    Ogata A, Banks RB (1961) A solution of differential equation of longitudinal dispersion in porous media. United States Geological Survey, Professional Paper 411-AGoogle Scholar
  60. 60.
    Parlange JY, Hogarth WL, Parlange MB, Haverkamp R, Barry DA, Ross PJ, Steenhuis TS (1998) Approximate analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions. Water Resour Res 25(8):1923–1924. doi:10.1023/A:1006508721609 Google Scholar
  61. 61.
    Philip JR (1994) Some exact-solutions of convection–diffusion and diffusion-equations. Water Resour Res 30(12):3545–3551. doi:10.1029/94WR01329 CrossRefGoogle Scholar
  62. 62.
    Polyanin AD, Zaitsev VF (2003) Handbook of exact solutions for ordinary differential equations. Chapman & Hall/CRC, London/Boca Raton, FloridaGoogle Scholar
  63. 63.
    Radhakrishnan K (1983) Comparison of numerical techniques for integration of stiff ordinary differential equations arising in combustion chemistry. NASA Technical Paper 2372Google Scholar
  64. 64.
    Radhakrishnan K (1984) Comparison of numerical techniques for integration of stiff ordinary differential equations arising in combustion chemistry. NASA Technical Paper 2372Google Scholar
  65. 65.
    Rajabi A, Ganji DD, Taherian H (2007) Application of homotopy perturbation method in nonlinear heat conduction and convection equations. Phys Lett A 360(4–5):570–573. doi:10.1016/j.physleta.2006.08.079 CrossRefGoogle Scholar
  66. 66.
    Remesikova M (2004) Solution of convection–diffusion problems with nonequilibrium adsorption. J Comput Appl Math 169:101–116. doi:10.1016/j.cam.2003.11.005 Google Scholar
  67. 67.
    Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160CrossRefGoogle Scholar
  68. 68.
    Roache PJ (2002) Code verification by the method of the manufactured solutions. J Fluids Eng 124(1):4–10. doi:10.1115/1.1436090 CrossRefGoogle Scholar
  69. 69.
    Roache PJ (2009) Fundamentals of verification and validation. Hermosa Publishers, Albuquerque, New MexicoGoogle Scholar
  70. 70.
    Rutherford JC (1994) River mixing. Wiley, New YorkGoogle Scholar
  71. 71.
    Saltzman J (1994) An unsplit 3D upwind method for hyperbolic conservation laws. J Comput Phys 115:153–168CrossRefGoogle Scholar
  72. 72.
    Savovic S, Djordjevich A (2012) Finite difference solution of the one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. Int J Heat Mass Transfer 55(15–16):4291–4294CrossRefGoogle Scholar
  73. 73.
    Siegel P, Mose R, Ackerer PH, Jaffre J (1997) Solution of the advection–diffusion equation using a combination of discontinuous and mixed finite elements. Int J Numer Methods Fluids 24:595–613CrossRefGoogle Scholar
  74. 74.
    Singh MK, Singh P, Singh VP (2010) Analytical solution for two-dimensional solute transport in finite aquifer with time-dependent source concentration. J Eng Mech 136(10):1309–1315. doi:10.1061/(ASCE)EM.1943-7889.0000177 CrossRefGoogle Scholar
  75. 75.
    Singh MK, Singh VP, Singh P, Shukla D (2009) Analytical solution for conservative solute transport in one-dimension homogeneous porous formations with time-dependent velocity. J Eng Mech 135:1015–1021. doi:10.1061/(ASCE)EM.1943-7889.0000018 CrossRefGoogle Scholar
  76. 76.
    Stakgold I, Holst M (2011) Green’s functions and boundary value problems, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  77. 77.
    Stern F, Wilson R, Shao J (2006) Quantitative V &V of CFD simulations and certification of CFD codes. Int J Numer Methods Fluids 50:1335–1355CrossRefGoogle Scholar
  78. 78.
    Stockie JM (2011) The mathematics of atmospheric dispersion modeling. SIAM Rev 53(2):349–372. doi:10.1137/10080991X CrossRefGoogle Scholar
  79. 79.
    Sun Y, Petersen NJ, Clement TP (1999) Analytical solutions for multiple species reactive transport in multiple dimensions. J Contam Hydrol 35:429–440. doi:10.1016/S01697722(98)00105-3 Google Scholar
  80. 80.
    Tirabassi T (1989) Analytical air-pollution advection and diffusion-models. Water Air Soil Pollut 47(1–2):19–24. doi:10.1007/BF00468993 CrossRefGoogle Scholar
  81. 81.
    Tracy FT (2006) Clean two -and three- dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resour Res 4. doi:10.1029/2005WR004638Google Scholar
  82. 82.
    Valocchi AJ, Malmstead M (1992) Accuracy of operator splitting for advection–dispersion-reaction problems. Water Resour Res 28(5):1471–1476. doi:10.1029/92WR00423 Google Scholar
  83. 83.
    van Genuchten MT, Alves WJ (1982), Analytical solutions of the one-dimensional convective–dispersive solute transport equation. U.S. Department of Agriculture, Technical, Bulletin No. 1661, p 151Google Scholar
  84. 84.
    Verwer JG, Sommeijer BP, Hundsdorfer W (2004) RKC time-stepping for advection–diffusion-reaction problems. J Comput Phys 201(1):61–79. doi:10.1016/j.jcp.2004.05.002 Google Scholar
  85. 85.
    Wan ZZ, Wang ZZ (1994) Hyperconcentrated flow. IAHR monographs. Taylor & Francis, London, The NetherlandsGoogle Scholar
  86. 86.
    Wang SY, Roache PJ, Schmalz RA, Jia Y, Smith PE (2008) Verification and validation of 3D free-surface flow models. Environmental and Water Resource Institute (EWRI), ASCE, Reston, VirginiaGoogle Scholar
  87. 87.
    Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094CrossRefGoogle Scholar
  88. 88.
    Wu Y, Cheung KF (2008) Explicit solution to the exact Riemann problem and application in nonlinear shallow-water equations. Int J Numer Methods Fluids 57:1649–1668. doi:10.1002/fld.1696 Google Scholar
  89. 89.
    Yadav RR, Jaiswal DK, Yadav HK, Rana G (2010) One-dimensional temporally dependent advection–dispersion equation in porous media: analytical solution. Nat Resour Model 23(4):521–539. doi:10.1111/j.1939-7445.2010.00072.x CrossRefGoogle Scholar
  90. 90.
    Yates SR (1990) An analytical solution for one-dimensional transport in heterogeneous porous-media. Water Resour Res 26(10):2331–2338. doi:10.1029/90WR00993 CrossRefGoogle Scholar
  91. 91.
    Yates SR (1992) An analytical solution for one-dimensional transport in porous-media with an exponential dispersion function. Water Resour Res 28(8):2149–2154. doi:10.1029/92WR01006
  92. 92.
    Zamani K, Bombardelli FA (2011) Development of a general transport module for DSM2, including sediment transport. Final Report, California Department of Water ResourcesGoogle Scholar
  93. 93.
    Zoppou C, Knight JH (1997) Analytical solution for advection and advection–diffusion equation with spatially variable coefficients. J Hydraul Eng 123(2):144–148. doi:10.1061/(ASCE)0733-9429(1997)123:2(144)Google Scholar
  94. 94.
    Zoppou C, Knight JH (1999) Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl Math Modell 23(9):667–685. doi:10.1016/S0307-904X(99)00005-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations