Skip to main content
Log in

New analytical formulations for calculation of dispersion parameters of Gaussian model using parallel CFD

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

New analytical formulations are presented for calculation of most effective parameters in the Gaussian plume dispersion model; the standard deviations of concentration for horizontal and vertical dispersion in neutral atmosphere conditions. Employing parallel Computational Fluid Dynamics (CFD) as a powerful tool, some well-known analytical generations of Pasquill–Gifford–Turner experimental data are modified. To achieve this aim, CFD simulations are carried out for single stack dispersion on flat terrain surface and ground level concentrations are determined in different distances. An inverse procedure in Gaussian plume dispersion model is then applied and standard deviations of horizontal and vertical dispersions are obtained. The values are compared with those of the well-known methods of Doury, Briggs and Hanna in two cases: the experimental data for release of krypton-85 from 100 m high and pollution dispersion from three 28 m high stacks of Besat power plant near Tehran. The comparison indicates that new formulations for plume dispersion are more accurate than other well-known formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CFD:

Computational Fluid Dynamics

RANS:

Reynolds Averaged Navier–Stokes

CALAUT:

Computational Aerodynamic Laboratory at Amirkabir University of Technology

C:

Convection

TD:

Turbulent diffusion

MD:

Molecular diffusion

SP:

Stress production

BP:

Buoyancy production

PS:

Pressure strain

DR:

Dissipation rate

RC:

Relative concentration

FB:

fractional bias

MG:

Mean geometric

NMSE:

Normalized mean square error

VG:

Geometric variance

References

  1. Architectural Institute of Japan (1998) Working group for numerical predication of wind loading on buildings and structures. Subcommittee for wind engineering data unit for structural design. Numerical prediction of wind loading on buildings and structures

  2. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. AIAA Paper No. 89–0366, 27th AIAA aerospace sciences meeting and exhibit, Reno, NV, USA.

  3. Blocken B, Stathopoulos T, Carmeliet J (2007a) CFD simulation of the atmospheric boundary layer-wall function problems. Atmos Environ 41(2):238–252

    Article  Google Scholar 

  4. Blocken B, Carmeliet J, Stathopoulos T (2007b) CFD evaluation of the wind speed conditions in passages between buildings—effect of wall-function roughness modifications on the atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 95(9–11):941–962

    Article  Google Scholar 

  5. Blocken B, Stathopoulos T, Saathoff P, Wang X (2008) Numerical evaluation of pollutant dispersion in the built environment: comparison between models and experiments. J Wind Eng Ind Aerodyn 96 (10–11):1817–1831

    Article  Google Scholar 

  6. Bovard P, Caput, C, Doury A (1968) Etude expérimentale en vraie grandeur des transferts atmosphériques en terrain hétérogène accidenté. In: Congrès international sur la radioprotection du milieu devant le développement des utilisations pacifiques de l’énergie nucléaire, SFRP, Toulouse, Mai, pp 61–77

  7. Briggs GA (1973) Diffusion estimation of small emissions. Contribution No. 79. Atmopsheric Turbulence and Diffusion Laboratory, Oak Ridge, TN

  8. Briggs GA (1984) Plume rise and buoyancy effects. In: Anders R (ed) Atmospheric science and power production. U.S. Department of Energy D.O.E./TIC-27601 (DE 84005177), Washington, DC

  9. Briggs GA (1985) Analytical parameterizations of diffusion—the convective boundary layer. J Clim Appl Met 14:1167–1186

    Google Scholar 

  10. Carpenter S, Montgomery TL, Leavitt JM, Colbaugh WC, Thomas FW (1971) Principal plume dispersion models: TVA power plants. J Air Pollut Control Assoc 21:491–495

    Article  Google Scholar 

  11. Carruthers DJ (1994) UK-ADMS: a new approach to modeling dispersion in the Earth’s atmospheric boundary layer. J Wind Eng Ind Aerodyn 52:139–153

    Article  Google Scholar 

  12. Carruthers DJ et al (1992) UK Atmospheric Dispersion Modelling System (UK-ADMS). In: van Dop H, Kallos G (eds) Air pollution modeling and its application IX. Appendix A: boundary layer structure. Plenum Press, New York, pp 15–28

  13. Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87:167–196

    Article  Google Scholar 

  14. Coirier WJ (2005) Evaluation of CFD codes—US perspective. In: Schatzmann M, Britter R (eds) Quality assurance of microscale meteorological models. COST 732 report. European Science Foundation, ISBN 3-00-018312-4

  15. Doury A (1960) Météorologie et contrôle des radiations en atmosphère libre au voisinage d’un site nucléaire. La météorologie_IV_60_451-471

  16. Doury A (1981) Le vadémécum des transferts atmosphériques. rapport n_CEA-DSN- 440. CEA

  17. Erbrink JJ (1995) Turbulent diffusion from tall stacks. The use of advanced boundary-layer meteorological parameters in the gaussian dispersion model “STACKS”. Ph.D. Thesis, Free University, Amsterdam, April 1995

  18. Franke J, Hellsten A, Schlunzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. COST Action 732: quality assurance and improvement of microscale meteorological models

  19. Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86:491–511

    Article  Google Scholar 

  20. Gifford FA (1961) Use of routine meteorological observations for estimating atmospheric dispersion. Nucl Saf 2:47–57

    Google Scholar 

  21. Hanna S, Baja E (2009) A simple urban dispersion model tested with tracer data from Oklahoma City and Manhattan. Atmos Environ 43(2009):778–786

    Article  Google Scholar 

  22. Hanna SR, Chang J (1993) Hybrid plume dispersion model (HPDM) improvements and testing at three field sites. Atmos Environ 27A:1491–1508

    Google Scholar 

  23. Hanna SR, Drivas PJ (1987) Guidelines for use of vapor cloud dispersion models. Center for chemical process safety. American Institute of Chemical Engineers, New York

  24. Hanna SR, Strimaitis DG, Chang JC (1991) Hazard response modeling uncertainty (a quantitative method) volume I: user’s guide for software for evaluating hazardous gas dispersion models. Sigma Research Corporation, Westford

  25. Holland JZ (1953) A Meteorological Survey of the Oak Ridge Area. U.S. Atomic Energy Commission Report No. ORO-99. U.S. Government Printing Office, Washington DC

  26. Launder BE (1989) Second-moment closure and its use in modeling turbulent industrial flows. Int J Numer Methods Fluids 9:963–985

    Article  Google Scholar 

  27. Launder BE (1989) Second-moment closure: present.. and future? Int J Heat Fluid Flow 10(4):282–300

    Article  Google Scholar 

  28. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  Google Scholar 

  29. Le Quinio R (1964) Abaques pour le calcul de la pollution atmosphérique due aux effluents d’une source ponctuelle. Service de contrôle des radiations et de genie radioactif. Note CEA N_488

  30. Leelossy A, Robert Meszaros R, Istvan Lagzi I (2011) Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant. J Environ Radioact 102:1117–1121

    Article  Google Scholar 

  31. Leonard BP, Mokhtari S (1990) ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow. NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Center

  32. Leroy C, Maro D, Hébert D, Solier L, Rozet M, Le Cavelier S, Connan O (2010) A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models. J Environ Radioact 101:937–944

    Article  Google Scholar 

  33. Li Y, Stathopoulos T (1997) Numerical evaluation of wind-induced dispersion of pollutants around a building. J Wind Eng Ind Aerodyn 67&68:757–766

    Article  Google Scholar 

  34. Li Y, Stathopoulos T (1998) Computational evaluation of pollutant dispersion around buildings: estimation of numerical errors. J Wind Eng Ind Aerodyn 77&78:619–630

    Article  Google Scholar 

  35. Loos CC, Seppelt R, Meier-Bethke S, Schiemann J, Richter O (2003) Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. J Theor Biol 22:241–255

    Article  Google Scholar 

  36. MacKay C, McKee S, Mulholland AJ (2006) Diffusion and convection of gaseous and fine particulate from a chimney. IMA J Appl Math 71:670–691

    Article  Google Scholar 

  37. Meroney RN, Leitl BM, Rafailidis S, Schatzmann M (1999) Wind-tunnel and numerical modeling of flow and dispersion about several building shapes. J Wind Eng Ind Aerodyn 81:333–345

    Article  Google Scholar 

  38. Pasquill F (1961) Estimation of the dispersion of windborne material. Meteorol Mag 90:33–49

    Google Scholar 

  39. Pelliccioni A, Tirabassi T (2006) Air dispersion model and neural network: a new perspective for integrated models in the simulation of complex situations. Environ Model Softw 21:539–546

    Article  Google Scholar 

  40. Raza SS, Avila R, Cervantes J (2001) A 3-D Lagrangian stochastic model for the meso-scale atmospheric dispersion applications. Nucl Eng Des 208:15–28

    Article  Google Scholar 

  41. Riddle A, Carruthers D, Sharpe A, McHugh C, Stocker J (2004) Comparison between FLUENT and ADMS for atmospheric dispersion modeling. Atmos Environ 38:1029–1038

    Article  Google Scholar 

  42. Schauberger G, Piringer M, Knauder W, Petz E (2011) Odour emissions from a waste treatment plant using an inverse dispersion technique. Atmos Environ 45:1639–1647

    Article  Google Scholar 

  43. Singer IA, Smith ME (1966) Atmospheric dispersion at Brookhaven National laboratory. Int J Air Water Pollut 10:125–135

    Google Scholar 

  44. Turner DB (1967) Workbook of atmospheric dispersion estimates. Public Health Series. Publication 999-AP-26. Cincinnati, OH

  45. Turner DB (1970) Workbook of atmospheric dispersion estimates. U.S. Environmental Protection Agency, Environment Health Series Air Pollution, 84, Research Triangle Park

  46. Turner R, Hurst T (2001) Factors influencing volcanic ash dispersal from the 1995 and 1996 eruptions of Mount Ruapehu, New Zealand. J Appl Meteorol 40:56–69

    Article  Google Scholar 

  47. USEPA (1995) Users guide to the Industrial Source Complex (ISC3) dispersion models (revised). Volume 1—user instructions. EPA-454/b-95-003a. US Environmental Protection Agency, Research Triangle Park, NC

  48. USEPA (2003) AERMOD: latest features and evaluation results. EPA-454/R-03-003. US Environmental Protection Agency, Research Triangle Park, NC

  49. Verwoerd WS (2011) New stochastic model for dispersion in heterogeneous porous media: 2. Gaussian plume transmission across stepwise velocity fluctuations. Appl Math Model 35:3355–3386

    Article  Google Scholar 

  50. Vieira de Melo AM, Meri Santos J, Reis Junior NC (2012) Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. J. Build Environ 56:8–20

    Article  Google Scholar 

  51. Wang X, McNamara KF (2006) Evaluation of CFD simulation using RANS turbulence models for building effects on pollutant dispersion. Environ Fluid Mech 6:181–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jahangirian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, M., Jahangirian, A. New analytical formulations for calculation of dispersion parameters of Gaussian model using parallel CFD. Environ Fluid Mech 13, 125–144 (2013). https://doi.org/10.1007/s10652-012-9260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-012-9260-5

Keywords

Navigation