Skip to main content

Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets

Abstract

In this study the Reynolds-averaged Navier-Stokes computational fluid dynamics methodology is used, which has proved to be a powerful tool for the simulations of the airflow and pollutant dispersion in the atmospheric environment. The interest is focused on the urban areas and more specifically on the street canyons, several types of which are examined in order to evaluate the performance of various turbulence models, including a Reynolds-stress model and variations of the k-ε model. The results of the two-dimensional simulations are compared with measurements from a diversity of independent street canyon experimental datasets, covering a wide range of aspect ratios, free stream velocities and roughnesses. This way more general and reliable conclusions can be reached about the applicability, accuracy and ease of use of each turbulence model. In this work, the renormalization group k-ε presented better results in most cases examined, while the Reynolds-stress model did not stand up for the expectations and also exhibited convergence problems.

This is a preview of subscription content, access via your institution.

References

  1. Fenger J (1999) Urban air quality. Atmos Environ 33: 4877–4900

    Article  CAS  Google Scholar 

  2. Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manage Assoc 54: 644–680

    Article  CAS  Google Scholar 

  3. Colvile RN, Hutchinson EJ, Mindell JS, Warren RF (2001) The transport sector as a source of air pollution. Atmos Environ 35: 1537–1565

    Article  CAS  Google Scholar 

  4. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496

    Article  Google Scholar 

  5. Nakamura Y, Oke TR (1988) Wind, temperature and stability conditions in an east–west oriented urban canyon. Atmos Environ 22: 2691–2700

    Article  Google Scholar 

  6. DePaul FT, Sheih CM (1986) Measurements of wind velocities in a street canyon. Atmos Environ 20: 455–459

    Article  Google Scholar 

  7. Oke TR (1988) Street design and urban canopy layer climate. Energ Build 11: 103–113

    Article  Google Scholar 

  8. Hunter LJ, Johnson GT, Watson ID (1992) An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmos Environ 26: 425–432

    Article  Google Scholar 

  9. Sini JF, Anquetin S, Mestayer PG (1996) Pollutant dispersion and thermal effects in urban street canyons. Atmos Environ 30: 2659–2677

    Article  CAS  Google Scholar 

  10. Ahmad K, Khare M, Chaudhry KK (2005) Wind tunnel simulation studies on dispersion at urban street canyon and intersections—a review. J Wind Eng Ind Aerodyn 95: 697–717

    Article  Google Scholar 

  11. Koutsourakis N (2010) Flow and pollutant dispersion in street canyons: a review. Technika Chronika Sci J TCG, 1:175–189. http://portal.tee.gr/portal/page/portal/PUBLICATIONS/SCIENTIFIC_PUBLICATIONS/2010/1o_teuxos2010/3786_0.pdf. Accessed 15 March 2012

  12. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37: 155–182

    Article  CAS  Google Scholar 

  13. Li XX, Liu CH, Leung DYC, Lam KM (2006) Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos Environ 40: 5640–5658

    Article  CAS  Google Scholar 

  14. Hassan AA, Crowther JM (1998) Modelling of fluid flow and pollutant dispersion in a street canyon. Environ Monit Assess 52: 281–297

    Article  CAS  Google Scholar 

  15. Hoydysh WG, Dabberdt WF (1988) Kinematics and dispersion characteristics of flows in asymmetric street canyons. Atmos Environ 22: 2677–2689

    Article  CAS  Google Scholar 

  16. Leitl BM, Meroney RN (1997) Car exhaust dispersion in a street canyon. Numerical critique of a wind tunnel experiment. J Wind Eng Ind Aerodyn 67&68: 293–304

    Article  Google Scholar 

  17. Meroney RN, Pavageau M, Rafailidis S, Schatzmann M (1996) Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. J Wind Eng Ind Aerodyn 62: 37–56

    Article  Google Scholar 

  18. Johnson GT, Hunter LJ (1998) Urban wind flows: wind tunnel and numerical simulations - a preliminary comparison. Environ Modell Softw 13: 279–286

    Article  Google Scholar 

  19. Huang H, Akutsu Y, Arai M, Tamura M (2000) A two dimensional air quality model in an urban street canyon: evaluation and sensitivity analysis. Atmos Environ 34: 689–698

    Article  CAS  Google Scholar 

  20. Baik JJ, Park RS, Chun HY, Kim JJ (2000) A laboratory model of urban street-canyon flows. J Appl Meteorol 39: 1592–1600

    Article  Google Scholar 

  21. Baik JJ, Kim JJ (2002) On the escape of pollutants from urban street canyons. Atmos Environ 36: 527–536

    Article  CAS  Google Scholar 

  22. Jeong SJ, Andrews MJ (2002) Application of the k-ε turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmos Environ 36: 1137–1145

    Article  CAS  Google Scholar 

  23. Kastner-Klein P, Fedorovich E, Rotach MW (1999) Organized and turbulent air motions in a wind tunnel model of a street canyon with and without moving vehicles. In: Proceedings of sixth international conference on harmonisation within atmospheric dispersion modelling, Rouen, France, 11–14 October

  24. Rotach MW (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29: 1473–1486

    Article  CAS  Google Scholar 

  25. Chan TL, Dong G, Leung CW, Cheung CS, Hung WT (2002) Validation of a two-dimensional pollutant dispersion model in an isolated street canyon. Atmos Environ 36: 861–872

    Article  CAS  Google Scholar 

  26. Sagrado APG, van Beeck J, Rambaud P, Olivari D (2002) Numerical and experimental modelling of pollutant dispersion in a street canyon. J Wind Eng Ind Aerodyn 90: 321–339

    Article  Google Scholar 

  27. Assimakopoulos VD, ApSimon HM, Moussiopoulos N (2003) A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmos Environ 37: 4037–4049

    Article  CAS  Google Scholar 

  28. Rafailidis S (1997) Influence of building areal density and roof shape on the wind characteristics above a town. Bound-Layer Meteorol 85: 255–271

    Article  Google Scholar 

  29. Xie X, Huang Z, Wang JS (2005) Impact of building configuration on air quality in street canyon. Atmos Environ 39: 4519–4530

    Article  CAS  Google Scholar 

  30. Rafailidis S, Schatzmann M (1995) Study on different roof geometries in a simplified urban environment. Universität Hamburg. http://www.mi.uni-hamburg.de/309.0.html. Accessed 5 Oct 2011

  31. Xie X, Liu CH, Leung DYC, Leung MKH (2006) Characteristics of air exchange in a street canyon with ground heating. Atmos Environ 40: 6396–6409

    Article  CAS  Google Scholar 

  32. Uehara K, Murakami S, Oikawa S, Wakamatsu S (2000) Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos Environ 34: 1553–1562

    Article  CAS  Google Scholar 

  33. Memon RA, Leung DYC (2011) On the heating environment in street canyon. Environ Fluid Mech 11: 465–480

    Article  Google Scholar 

  34. Solazzo E, Cai X, Vardoulakis S (2009) Improved parameterisation for the numerical modelling of air pollution within an urban street canyon. Environ Modell Softw 24: 381–388

    Article  Google Scholar 

  35. Kastner-Klein P, Fedorovich E, Rotach M (2001) A wind tunnel study of organised and turbulent air motions in urban street canyons. J Wind Eng Ind Aerodyn 89: 849–861

    Article  Google Scholar 

  36. Coirier WJ, Fricker DM, Furmanczyk M, Kim S (2005) A computational fluid dynamics approach for urban area transport and dispersion modeling. Environ Fluid Mech 5: 443–479

    Article  Google Scholar 

  37. Gowardhan AA, Pardyjak ER, Senocak I, Brown MJ (2011) A CFD-based wind solver for an urban fast response transport and dispersion model. Environ Fluid Mech 11: 439–464

    Article  Google Scholar 

  38. Andronopoulos S, Grigoriadis D, Robins A, Venetsanos A, Rafailidis S, Bartzis JG (2002) Three-dimensional modelling of concentration fluctuations in complicated geometry. Environ Fluid Mech 1: 415–440

    Article  Google Scholar 

  39. Milliez M, Carissimo B (2007) Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Bound-Layer Meteorol 122: 321–342

    Article  Google Scholar 

  40. Wang X, McNamara KF (2006) Evaluation of CFD simulation using RANS turbulence models for building effects on pollutant dispersion. Environ Fluid Mech 6: 181–202

    Article  Google Scholar 

  41. Gromke C, Buccolieri R, DiSabatino S, Ruck B (2008) Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations – evaluation of CFD data with experimental data. Atmos Environ 42: 8640–8650

    Article  CAS  Google Scholar 

  42. Ferziger JH, Peric M (1999) Computational methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  43. Ca VT, Asaeda T, Ito M, Armfield S (1995) Characteristics of wind field in a street canyon. J Wind Eng Ind Aerodyn 57: 63–80

    Article  Google Scholar 

  44. Walton A, Cheng AYS (2002) Large-eddy simulation of pollution dispersion in an urban street canyon—part II: idealised canyon simulation. Atmos Environ 36: 3615–3627

    Article  CAS  Google Scholar 

  45. Cheng Y, Lien FS, Yee E, Sinclair R (2003) A comparison of large Eddy simulations with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J Wind Eng Ind Aerodyn 91: 1301–1328

    Article  Google Scholar 

  46. Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42: 8770–8784

    Article  CAS  Google Scholar 

  47. Xie ZT, Castro IP (2009) Large-eddy simulation for flow and dispersion in urban streets. Atmos Environ 43: 2174–2185

    Article  CAS  Google Scholar 

  48. Li XX, Liu CH, Leung DYC (2008) Large-eddy simulation of flow and pollutant dispersion in high-aspect-ratio urban street canyons with wall model. Bound-Layer Meteorol 129: 249–268

    Article  Google Scholar 

  49. Kim J, Kline SJ, Johnston, JP (1980) Investigation of a reattaching turbulent shear layer: flow over a backward-facing step. J Fluid Eng 102:302–308. Experimental data available online from: http://scholar.lib.vt.edu/ejournals/JFE/data/JFE/DB96-243/d1/f0421. Accessed 15 Mar 2012

  50. Kovar-Panskus A, Louka P, Sini JF, Savory E, Czech M, Abdelqari A, Mestayer PG, Toy N (2002) Influence of geometry on the mean flow within urban street canyons—a comparison of wind tunnel experiments and numerical simulations. Water Air Soil Pollut 2: 365–380

    Article  Google Scholar 

  51. TRAPOS: Optimisation of modelling methods for traffic pollution in streets. http://www2.dmu.dk/AtmosphericEnvironment/trapos. Accessed 15 Mar 2012

  52. Sahm P, Louka P, Ketzel M, Guilloteau E, Sini JF (2002) Intercomparison of numerical urban dispersion models—part I: street canyon and single building configurations. Water Air Soil Pollut 2: 587–601

    Article  Google Scholar 

  53. Li XX, Leung DYC, Liu CH, Lam KM (2008) Physical modeling of flow field inside urban street canyons. J Appl Meteorol Clim 47: 2058–2067

    Article  Google Scholar 

  54. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Method Appl M Eng 3: 269–289

    Article  Google Scholar 

  55. Bradshaw P, Launder B, Lumley J (1996) Collaborative testing of turbulence models. J Fluid Eng 118: 243–247

    Article  CAS  Google Scholar 

  56. Wilcox DC (1993) Turbulence modeling for CFD. DCW Industries Inc., La Canada

    Google Scholar 

  57. Bartzis JG (2005) New approaches in two-equation turbulence modelling for atmospheric applications. Bound-Layer Meteorol 116: 445–459

    Article  Google Scholar 

  58. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence I. Basic theory. J Sci Comput 1: 3–51

    Article  Google Scholar 

  59. Smith LM, Reynolds WC (1992) On the Yakhot-Orszag renormalization group method for deriving turbulence statistics and models. Phys Fluids A 4: 364–390

    Article  Google Scholar 

  60. Yakhot V, Smith LM (1992) The renormalization group, the ε-expansion and derivation of turbulence models. J Sci Comput 7: 35–61

    Article  Google Scholar 

  61. Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A 4: 1510–1520

    Article  CAS  Google Scholar 

  62. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech 68: 537–566

    Article  Google Scholar 

  63. Launder BE (1975) On the effect of a gravitational field on the turbulent transport of heat and momentum. J Fluid Mech 67: 569–581

    Article  Google Scholar 

  64. Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86: 491–511

    Article  Google Scholar 

  65. Daly BJ, Harlow FH (1970) Transport equations in turbulence. Phys Fluids 13: 2634–2649

    Article  Google Scholar 

  66. Markatos NC (1986) The mathematical modelling of turbulent flows. Appl Math Model 10: 190–220

    Article  Google Scholar 

  67. Markatos NC (1987) Computer simulation techniques for turbulent flows. In: (eds) In: encyclopaedia of fluid mechanics, complex flow phenomena and modelling (Vol. 6). Gulf Publ. Co., Houston

    Google Scholar 

  68. Spalding DB (1980) A mathematical modeling of fluid dynamics, heat transfer and mass transfer processes. Imperial College Report HTS/8011, London

    Google Scholar 

  69. POLIS, Solution techniques. http://www.cham.co.uk/phoenics/d_polis/d_lecs/numerics/solution.htm#sst. Accessed 5 Oct 2011

  70. Markatos NC (1978) Transient flow and heat transfer of liquid sodium coolant in the outlet plenum of a fast nuclear reactor. Int J Heat Mass Transf 21: 1565–1579

    Article  CAS  Google Scholar 

  71. Markatos NC (1989) Computational fluid flow capabilities and software. Ironmak Steelmak 16: 266–273

    CAS  Google Scholar 

  72. Markatos NC (1993) Mathematical modelling of single and two-phase flow problems in the process industries. Révue de l’ Institut Français du Pétrole 48: 631–662

    CAS  Google Scholar 

  73. POLIS, the PHOENICS On-line information system. http://www.cham.co.uk/phoenics/d_polis/polis.htm. Accessed 5 Oct 2011

  74. Huber AH (1989) The influence of building width and orientation on plume dispersion in the wake of a building. Atmos Environ 23: 2109–2116

    Article  CAS  Google Scholar 

  75. POLIS, Roughness wall functions. http://www.cham.co.uk/phoenics/d_polis/d_enc/turmod/enc_tu84.htm. Accessed 21 Oct 2011

  76. Chen YS, Kim SW (1987) Computation of turbulent flows using an extended k-ε turbulence closure model. NASA CR-179204

  77. Tominaga Y, Stathopoulos T (2007) Turbulent schmidt numbers for CFD analysis with various types of flowfield. Atmos Environ 41: 8091–8099

    Article  CAS  Google Scholar 

  78. Koeltzsch K (2000) The height dependence of the turbulent Schmidt number within the boundary layer. Atmos Environ 34: 1147–1151

    Article  CAS  Google Scholar 

  79. Kim JJ, Baik JJ (2003) Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. J Wind Eng Ind Aerodyn 91: 309–329

    Article  Google Scholar 

  80. Khan IM, Simons RR, Grass AJ (2005) Upstream turbulence effect on pollution dispersion. Environ Fluid Mech 5: 393–413

    Article  Google Scholar 

  81. Caton F, Britter RE, Dalziel S (2003) Dispersion mechanisms in a street canyon. Atmos Environ 37: 693–702

    Article  CAS  Google Scholar 

  82. Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18: 1–18

    Article  Google Scholar 

  83. Baik JJ, Kim JJ (1999) A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J Appl Meteorol 38: 1576–1589

    Article  Google Scholar 

  84. Kim JJ, Baik JJ (2001) Urban street-canyon flows with bottom heating. Atmos Environ 35: 3395–3404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Koutsourakis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koutsourakis, N., Bartzis, J.G. & Markatos, N.C. Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets. Environ Fluid Mech 12, 379–403 (2012). https://doi.org/10.1007/s10652-012-9240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-012-9240-9

Keywords

  • Urban street canyons
  • CFD modelling
  • Turbulence models evaluation
  • Experimental datasets
  • Reynolds-stress model
  • RNG k-ε