Skip to main content

Advertisement

Log in

Current knowledge in tidal bores and their environmental, ecological and cultural impacts

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising. It forms during the spring tide conditions when the tidal range exceeds 5–6 m and the flood tide is confined to a narrow funnelled estuary with low freshwater levels. A tidal bore is associated with a massive mixing of the estuarine waters that stirs the organic matter and creates some rich fishing grounds. Its occurrence is essential to many ecological processes and the survival of unique eco-systems. The tidal bore is also an integral part of the cultural heritage in many regions: the Qiantang River bore in China, the Severn River bore in UK, the Dordogne River in France. In this contribution, the environmental, ecological and cultural impacts of tidal bores are reviewed, explained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barré de Saint Venant AJC (1871) Théorie et Equations Générales du Mouvement Non Permanent des Eaux Courantes (Theory and general equations of unsteady open channel flow motion). Comptes Rendus des séances de l’Académie des Sciences, Paris, France, Séance 17 July 1871, vol 73, pp 147–154 (in French)

  2. Bazin H (1865) Recherches Expérimentales sur la Propagation des Ondes (Experimental research on wave propagation). Mémoires présentés par divers savants à l’Académie des Sciences, Paris, France, vol 19, pp 495–644 (in French)

  3. Benjamin TB, Lighthill MJ (1954) On cnoidal waves and bores. Proc R Soc Lond A Math Phys Sci 224(1159): 448–460

    Article  Google Scholar 

  4. Branner JC (1885) The pororoca, or bore, of the Amazon. Rand Avery & Co, Boston, USA, pp 3–12 (Also 1903, List of Publications by Members of the Department of Geology, Stanford University, USA)

  5. Boussinesq JV (1877) Essai sur la Théorie des Eaux Courantes (Essay on the theory of water flow). Mémoires présentés par divers savants à l’Académie des Sciences, Paris, France, vol 23, Série 3, No. 1, supplément 24, pp 1–680 (in French)

  6. Butcher JG (2004) The closing of the frontier. A history of the marine fisheries of southeast Asia c. 1850–2000. A modern economic history of southeast Asia series, KITLV Press, Leiden, The Netherlands, 442 pp

  7. Chanson H (2004) Environmental hydraulics of open channel flows. Elsevier Butterworth-Heinemann, Oxford, UK, p 483 pp

    Google Scholar 

  8. Chanson H (2008) Photographic observations of tidal bores (Mascarets) in France. Hydraulic model report no. CH71/08, Division of Civil Engineering, The University of Queensland, Brisbane, Australia, 104 pp, 1 movie, 2 audio files

  9. Chanson H (2009) Current knowledge in hydraulic jumps and related phenomena a survey of experimental results. Eur J Mech B/Fluid 28(2): 191–210. doi:10.1016/j.euromechflu.2008.06.004

    Article  Google Scholar 

  10. Chanson H (2009) An experimental study of tidal bore propagation: the impact of bridge piers and channel constriction. Hydraulic model report no. CH74/08, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 109 pp, 5 movies

  11. Chanson H (2009) Environmental, ecological and cultural impacts of tidal bores, benaks, bonos and burros. In: Lopez-Jimenez PA, Fuertes-Miquel VS, Iglesias-Rey PL, Lopez-Patino G, Martinez-Solano FJ, Palau-Salvador (eds) Proceedings of international workshop on environmental hydraulics IWEH09, theoretical, experimental and computational solutions, Valencia, Spain, 29–30 October. Invited keynote lecture, 20 pp, CD-ROM

  12. Chanson H (2009) The rumble sound generated by a tidal bore event in the Baie du Mont Saint Michel. J Acoust Soc Am 125(6): 3561–3568. doi:10.1121/1.3124781

    Article  Google Scholar 

  13. Chen S (2003) Tidal bore in the north branch of the Changjiang estuary. Proceedings of international conference on estuaries and coasts ICEC-2003, Hangzhou, China, 8–11 November, vol 1. International Research Training Center on Erosion and Sedimentation, China, pp 233–239

  14. Chen J, Liu C, Zhang C, Walker HJ (1990) Geomorphological development and sedimentation in Qiantang estuary and Hangzhou bay. J Coastal Res 6(3): 559–572

    Google Scholar 

  15. Clancy EP (1968) The tides pulses of the earth. Anchor Books, NY, USA, p 228 pp

    Google Scholar 

  16. Coates R (2007) The genealogy of eagre ‘tidal surge in the river trent’. Eng Lang Linguist 11(3): 507–523

    Google Scholar 

  17. Colas A (2007) Chine. Le Mascaret Record (China. The tidal bore record. Surf Session 248:5 (in French)

    Google Scholar 

  18. Dai Z, Zhou C (1987) The Qiantang bore. Int J Sediment Res 1: 21–26

    Google Scholar 

  19. Dally WR (2001) Maximum speed of surfers. J Coastal Res 29(Special issue): 33–40

    Google Scholar 

  20. Davies C (1988) Tidal river bores. Dissertation in partial fulfilment of BA degree, Department of Geography, Edge Hill College, University of Lancaster, UK

  21. Donnelly C, Chanson H (2005) Environmental impact of undular tidal bores in tropical rivers. Environ Fluid Mech 5(5): 481–494. doi:10.1007/s10652-005-0711-0

    Article  Google Scholar 

  22. Fenton JD (1979) A high-order Cnoidal wave theory. J Fluid Mech 94(Part I): 129–161

    Article  Google Scholar 

  23. Fenton JD (1998) The Cnoidal theory of water waves. In: Herbich JB (eds) Developments in offshore engineering: wave phenomena and offshore topics. Handbook of coastal and ocean engineering. Gulf Professional Publishing, Houston, USA

    Google Scholar 

  24. Furuyama S, Chanson H (2008) A numerical study of open channel flow hydrodynamics and turbulence of the tidal bore and dam-break flows. Hydraulic model report no. CH66/08, Division of Civil Engineering The University of Queensland Brisbane, Australia, 88 pp

  25. Gordon JH (1924) Tidal bore at mouth of Colorado River. December 8–10, 1923. Month Weather Rev 52: 98–99

    Article  Google Scholar 

  26. Greb SF, Archer AW (2007) Soft-sediment deformation produced by tides in a Meizoseismic area, Turnagain Arm, Alaska. Geology 35(5): 435–438

    Article  Google Scholar 

  27. Henderson FM (1966) Open channel flow. MacMillan Company, NY, USA

    Google Scholar 

  28. Hornung HG, Killen P (1976) A Stationary oblique breaking wave for laboratory testing of surfboards. J Fluid Mech 78(3): 459–480 4 plates

    Article  Google Scholar 

  29. Hornung HG, Willert C, Turner S (1995) The flow field downsteam of a hydraulic jump. J Fluid Mech 287: 299–316

    Article  Google Scholar 

  30. Hutt JA, Black KP, Mead ST (2001) Classification of surf breaks in relation to surfing skill. J Coastal Res 29(Special issue): 66–81

    Google Scholar 

  31. Ippen AT, Harleman RF (1956) Verification of theory for oblique standing waves. Trans ASCE 121: 678–694

    Google Scholar 

  32. Kjerfve B, Ferreira HO (1993) Tidal bores: first ever measurements. Ciência e Cultura (J Brazil Assoc Adv Sci) 45(2): 135–138

    Google Scholar 

  33. Koch C, Chanson H (2008) Turbulent mixing beneath an undular bore front. J Coastal Res 24(4): 999–1007. doi:10.2112/06-0688.1

    Article  Google Scholar 

  34. Koch C, Chanson H (2009) Turbulence measurements in positive surges and bores. J Hydraul Res IAHR 47(1): 29–40. doi:10.3826/jhr.2009.2954

    Article  Google Scholar 

  35. Le Méhauté B, Divoky D, Lin A (1968) Shallow water waves: a comparison of theories and experiments. Proceedings od 11th international conference on coastal engineering, London, UK, vol I. ASCE Publications, VA, USA, pp 86–107

  36. Lewis AW (1972) Field studies of a tidal bore in the River Dee. MSc thesis, Marine Science Laboratories, University College of North Wales, Bangor, UK

  37. Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge, UK, p 504 pp

    Google Scholar 

  38. Liggett JA (1994) Fluid mechanics. McGraw-Hill, NY, USA

    Google Scholar 

  39. Locke A, Hanson JM, Klassen GJ, Richardson SM, Aube CI (2003) The damming of the petiticodiac river: species, populations, and habitats lost. Northeast Nat 10(1): 39–54

    Google Scholar 

  40. Lubin P, Glockner S, Chanson H (2010) Numerical simulation of a weak breaking tidal bore. Mech Res Commun 37. doi:10.1016/j.mechrescom.2009.09.008 (in Press)

  41. Mason T, Priestley D, Reeve DE (2007) Monitoring near-shore shingle transport under waves using a passive acoustic technique. J Acoust Soc Am 122(2): 737–746

    Article  CAS  Google Scholar 

  42. Molchan-Douthit, M (1998) Alaska bore tales. National Oceanic and Atmospheric Administration, Anchorage, USA, revised, 2 pp

  43. Montes JS (1998) Hydraulics of open channel flow. ASCE Press, NY, USA, p 697 pp

    Google Scholar 

  44. Moul AC (1923) The bore on the Chien-Tang river in China. Toung Pao, Archives pour servir à l’étude de l’histoire, des langues, la geographie et l’ethnographie de l’Asie Orientale, vol 22. Chine, Japon, Corée, Indo-Chine, Asie Centrale et Malaisie, pp 10–28

  45. Murphy D (1983) Pororoca! Calypso log. Cousteau Society, FL, vol 10, no 2, pp 8–11

  46. Open University Course Team (1999) Waves, tides and shallow-water processes, 2n edn. Butterworth-Heinemann, Oxford, UK, 227 pp

  47. Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25: 321–330

    Article  Google Scholar 

  48. Ponsy J, Carbonnell M (1966) Etude Photogrammétrique d’Intumescences dans le Canal de l’Usine d’Oraison, Basses-Alpes. (Photogrammetric study of positive surges in the oraison powerplant Canal). J SocFrançaise de Photogram 22: 18–28

    Google Scholar 

  49. Prosperetti A (1988) Bubble-related ambient noise in the ocean. J Acoust Soc Am 84(3): 1042–1054

    Article  Google Scholar 

  50. Rayleigh L (1908) Note on tidal bores. Proc R Soc Lond A 81(541): 448–449

    Google Scholar 

  51. Rowbotham F (1983) The severn bore, 3rd edn. David and Charles, Newton Abbot, UK, 104 pp

  52. Simpson JH, Fisher NR, Wiles P (2004) Reynolds stress and TKE production in an estuary with a tidal bore. Estuar Coastal Shelf Sci 60(4): 619–627

    Article  Google Scholar 

  53. Sykes G (1937) The Colorado delta Carnegie Institution of Washington, Publ no 460, Baltimore, USA, 193 pp, 1 map

  54. Tessier B, Terwindt JHJ (1994) An example of soft-sediment deformations in an intertidal environment—the effect of a tidal bore. Comptes-Rendus de l’Académie des Sciences, Série II, vol 319, No 2, Part 2, pp 217–233 (in French).

  55. Thorne PD (1986) Laboratory and marine measurements on the acoustic detection of sediment transport. J Acoust Soc Am 80(3): 899–910

    Article  Google Scholar 

  56. Wiegel RL (1960) A presentation of Cnoidal wave theory for practical application. J Fluid Mech 7(2): 273–286

    Article  Google Scholar 

  57. Wolanski E, Moore K, Spagnol S, D’Adamo N, Pattiertchi C (2001) Rapid, human-induced siltation of the Macro-Tidal Ord River Estuary, Western Australia. Estuar Coast Shelf Sci 53: 717–732

    Article  Google Scholar 

  58. Wolanski E, Williams D, Spagnol S, Chanson H (2004) Undular tidal bore dynamics in the Daly estuary, Northern Australia. Estuar Coastal Shelf Sci 60(4): 629–636. doi:10.1016/j.ecss.2004.03.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Chanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanson, H. Current knowledge in tidal bores and their environmental, ecological and cultural impacts. Environ Fluid Mech 11, 77–98 (2011). https://doi.org/10.1007/s10652-009-9160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9160-5

Keywords

Navigation