Skip to main content

Advertisement

Log in

Helium isotopic constraints on simulated ocean circulations: implications for abyssal theories

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

There is ongoing controversy as to the dynamical significance of geothermal heat flow in shaping the abyssal circulation. In this paper, we gauge the impact of geothermal heating and vertical mixing parameterizations in the general circulation model OPA. The experiments are evaluated by comparing simulated mantle 3He with observations collected during the GEOSECS and WOCE programs. This tracer is particularly adapted to the validation of our numerical simulations because its injection into the ocean interior is tightly linked to geothermal processes. In agreement with previous studies, the model circulation is found very sensitive to the parameterization of the vertical mixing. The meridional overturning circulation (MOC) is globally intensified when moving from a constant mixing to a version with enhanced mixing near the ocean bottom, with the most drastic variation observed for AABW (+ 50%). Adding the geothermal heat flux mainly affects AABW circulation in the model, enhancing it all the more as the meridional circulation is slow (low vertical mixing), but proportionally less so when it is more vigorous (enhanced vertical mixing). This can be understood from the requirement of the abyssal ocean to maintain heat balance. The evaluation with mantle 3He simulations reveals that the version with low vertical mixing, with its sluggish circulation, produces unrealistically high a 3He isotopic composition. However, with a vertical mixing that is enhanced at depth, the 3He distribution falls within an acceptable range of values in the deep ocean. Finally, adding the geothermal heating to this enhanced mixing case provides a substantial improvement of the simulation of AABW in all basins but the Indian Ocean. 3He isotopic composition is then in good agreement with the observations. Taken jointly with observational estimates of the MOC intensity, these independent isotopic constraints suggest that both geothermal heating and enhanced diapycnal mixing at depth are key ingredients in the realistic simulation of abyssal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adcroft A, Scott J, Marotzke J (2001) Impact of geothermal heating on the global ocean circulation. Geophys Res Lett 28: 1735–1738

    Article  Google Scholar 

  2. Adkins JF, Ingersoll AP, Pasquero C (2005) Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Q Sci Rev 24: 581–594

    Article  Google Scholar 

  3. Beckmann A, Döscher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27: 581–591

    Article  Google Scholar 

  4. Blanke B, Delecluse P (1993) Variability of the tropical ocean simulated by a general circulation model with mixed layer-physics. J Phys Oceanogr 23: 1363–1388

    Article  Google Scholar 

  5. Böning CW, Holland WR, Bryan FO, Danabasoglu G, McWilliams JC (1995) An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean. J Clim 8: 515–523

    Article  Google Scholar 

  6. Broecker WS, Peng TH (1982) Tracers in the sea, Lamont Doherty Geological Observatory. Palisades, New York, pp 690

    Google Scholar 

  7. Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models. J Phys Oceanogr 17: 970

    Article  Google Scholar 

  8. Craig H, Clarke WB, Beg MA (1975) Excess 3He in deep water on the east Pacific rise. Earth Planet Sci Lett 26: 125–132

    Article  CAS  Google Scholar 

  9. Danabasoglu G, MCWilliams JC, Gent PR (1994) The role of mesoscale tracer transports in global ocean crirculation. Science 264: 1123–1126

    Article  CAS  Google Scholar 

  10. Duffy PB, Caldeira K, Selvaggi J, Hoffert MI (1997) Effects of subgrid-scale mixing parametrisations on simulated distributions of natural 14C, temperature and salinity in a three-dimensional ocean general circulation model. J Phys Oceanogr 27: 498–523

    Article  Google Scholar 

  11. Dutay J-C, Bullister JL, Doney SC, Orr JC, Najjar R, Caldeira K, Campin J-M, Drange H, Follows M, Gao Y, Gruber N, Hecht MW, Ishida A, Joos F, Lindsay K, Madec G, Maier-Reimer E, Marshall JC, Matear RJ, Monfray P, Mouchet A, Plattner G-K, Sarmiento J, Schlitzer R, Slater R, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2002) Evaluation of ocean model ventilation with cfc-11: comparison of 13 global ocean models. Ocean Model 4: 89–120

    Article  Google Scholar 

  12. Dutay J-C, Jean-Baptiste P, Campin JM, Ishida A, Maier-Reimer E, Matear RJ, Mouchet A, Totterdell IJ, Yamanaka Y, Rodgers K, Madec G, Orr JC (2004) Evaluation of OCMIP-2 ocean model’s deep circulation with mantle 3He. J Mar Syst 48: 15–36

    Article  Google Scholar 

  13. Emile-Geay J, Madec G (2009) Geothermal heating, diapycnal mixing, and the abyssal circulation. Ocean Sci 5: 203–218

    Google Scholar 

  14. England MH, Hirst AC (1997) Chlorofluorocarbon uptake in a world ocean model 2. Sensitivity to surface thermohaline forcing and subsurface mixing parameterizations. J Geophys Res 102: 15709–15731

    Article  CAS  Google Scholar 

  15. England M, Holloway G (1998) Simulations of cfc content and water mass age in the deep north Atlantic. J Geophys Res 103: 15885–15901

    Article  CAS  Google Scholar 

  16. England MH, Rahmstorf S (1999) Sensitivity of ventilation rates and radiocarbon uptake to subgrid-scale mixing in ocean models. J Phys Oceanogr 29: 2802–2827

    Article  Google Scholar 

  17. Farley KA, Maier-Reimer E, Schlosser P, Broecker WS (1995) Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general circulation model. J Geophys Res 100: 3829–3839

    Article  CAS  Google Scholar 

  18. Ganachaud A (2003) Large-scale mass transports, water mass formation, and diffusivities from world ocean circulation experiment (WOCE) hydrographic data. J Geophys Res 108. doi:10.1029/2002JC001565

  19. Ganachaud A, Wunsch C, Marotzke J, Toole J (2000) Meridional overturning and large-scale circulation of the Indian Ocean. J Geophys Res 105: 26117–26134

    Article  Google Scholar 

  20. Gent PR, Willebrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25: 463–474

    Article  Google Scholar 

  21. Goosse H, Campin JM, Fichefet T, Deleersnijder E (1997) Impact of sea-ice formation on the properties of Antarctic bottom water. Ann Glaciol 25: 276–281

    Google Scholar 

  22. Iudicone D, Madec G, Blanke B, Speich S (2008) The role of the southern ocean surface forcings and mixing in the global conveyor belt. J Phys Oceanogr 38: 1357–1376

    Article  Google Scholar 

  23. Iudicone D, Speich S, Madec G, Blanke B (2008) The global conveyor belt from a southern ocean perspective. J Phys Oceanogr 38: 1401–1425

    Article  Google Scholar 

  24. Jayne SR, Laurent LCS (2001) Parameterizing tidal dissipation over rough topography. Geophys Res Lett 28: 811–814

    Article  Google Scholar 

  25. Jean-Baptiste P (1992) Helium-3 distribution in the deep world ocean: its relation to hydrothermal 3He fluxes and to terrestrial heat budget. In: Consultants meeting on isotopes of noble gases as tracers in environmental studies, Vienna

  26. Joyce T, Warren B, Talley L (1986) The geothermal heating of the abyssal subarctic Pacific Ocean. Deep Sea Res 33(8): 1003–1015

    Article  CAS  Google Scholar 

  27. Kamenkovich IV, Goodman PJ (2000) The dependence of AABW transport in the Atlantic on vertical diffusivity. Geophys Res Lett 27: 3739–3742

    Article  Google Scholar 

  28. Lupton JE (1995) Hydrothermal plumes: near and far field. In: Humphris S, Zierenberg R, Mullineaux L, Thomson R (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Geophysical Monograph 91. American Geophysical Union, Washington, DC, pp 317–346

  29. Lupton JE (1996) A far-field hydrothermal plume from Loihi Seamount. Science 272: 976–979

    Article  CAS  Google Scholar 

  30. Lupton JE (1998) Hydrothermal helium plumes in the Pacific Ocean. J Geophys Res 103: 15853–15868

    Article  CAS  Google Scholar 

  31. Lupton JE, Craig H (1981) A major helium-3 source at 15°S on the east pacific rise. Science 214: 13–18

    Article  CAS  Google Scholar 

  32. Madec G, Imbard M (1996) A global ocean mesh to overcome the north pole singularity. Clim Dyn 12: 381–388

    Article  Google Scholar 

  33. Madec G, Delecluse P, Imbard M, Lévy C (1998) Opa8.1 ocean general circulation model reference manual. Notes du pôle de Modélisation de l’IPSL 11

  34. Müller RD, Roest WR, Royer J-Y, Gahagan LM, Sclater JG (1997) Digital isochrons of the ocean floor. J Geophys Res 102(32): 3211–3214

    Article  Google Scholar 

  35. Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res 45: 1977–2010

    Article  Google Scholar 

  36. Naveira Garabato AC, Stevens DP, Watson AJ, Roether W (2007) Short-circuiting of the oceanic overturning circulation in the Antarctic Circumpolar Current. Nature 447(7141): 194–197. doi:10.1038/nature05832

    Article  CAS  Google Scholar 

  37. Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of antarctic bottom water. Prog Oceanogr 43: 55–109

    Article  Google Scholar 

  38. Palmer MD, Naveira Garabato AC, Stark JD, Hirschi JJ-M, Marotzke J (2007) The influence of diapycnal mixing on quasi-steady overturning states in the Indian Ocean. J Phys Oceanogr 37: 2290–2304

    Article  Google Scholar 

  39. Paul A, Schäfer-Neth C (2003) Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum. Paleoceanography 18(3): 1058. doi:10.1029/2002PA000783

    Article  Google Scholar 

  40. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419: 207–214

    Article  CAS  Google Scholar 

  41. Robbins PE, Toole JM (1997) The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep Sea Res I 44: 879–906

    Article  CAS  Google Scholar 

  42. Roullet G, Madec G (2000) Salt conservation, free surface and varying volume: a new formulation for ocean GCMs. J Geophys Res 105: 23927–23942

    Article  Google Scholar 

  43. Schmitz WJ Jr (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33: 151–173

    Article  Google Scholar 

  44. Schlösser P, Bullister JL, Fine R, Jenkins WJ, Key R, Lupton J, Roether W, Smethie W (2001) Transformation and age of water masses. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic Press, San Diego

    Google Scholar 

  45. Scott J, Marotzke J, Adcroft A (2001) Geothermal heating and its influence on the meridional overturning circulation. J Geophys Res 106: 1–14

    Article  Google Scholar 

  46. Sloyan BM, Rintoul SR (2001) The southern ocean limb of global deep overturning circulation. J Phys Oceanogr 31: 143–173

    Article  Google Scholar 

  47. Srinivasan A, Top Z, Schlosser P, Hohmann R, Iskandarani M, Olson DB, Lupton JE, Jenkins WJ (2004) Mantle 3He distribution and deep circulation in the Indian Ocean. J Geophys Res 109: C06012. doi:10.1029/2003JC002028

    Article  CAS  Google Scholar 

  48. Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359: 123–129

    Article  Google Scholar 

  49. Stommel H (1982) Is the south Pacific helium-3 plume dynamically active?. Earth Planet Sci Lett 61: 63–67

    Article  CAS  Google Scholar 

  50. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16: 3213–3226

    Article  Google Scholar 

  51. Toole JM, Warren BA (1993) A hydrographic section across the subtropical south Indian Ocean. Deep Sea Res I 40: 1973–2019

    Article  CAS  Google Scholar 

  52. Urakawa LS, Hasumi H (2009) A remote effect of geothermal heat on the global thermohaline circulation. J Geophys Res 114: C07016. doi:10.1029/2008JC005192

    Article  Google Scholar 

  53. Visbeck M (2002) Climate—the ocean’s role in Atlantic climate variability. Science 297(5590): 2223–2224

    Article  CAS  Google Scholar 

  54. Visbeck M (2007) Concept oceanography: power of pull. Nature 447: 383. doi:10.1038/447383a

    Article  CAS  Google Scholar 

  55. Wanninkhof R (1992) Relationship between wind speed and gaz exchange over the ocean. J Geophys Res 97: 7373–7382

    Article  Google Scholar 

  56. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M et al (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past 3: 51–64

    Article  Google Scholar 

  57. Wijffels SE, Toole JM, Bryden HL, Fine RA, Jenkins WJ, Bullister JL (1996) The water masses and circulation at 10N in the Pacific. Deep Sea Res 43: 501–544

    Article  Google Scholar 

  58. Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech 36: 281–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Dutay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutay, JC., Emile-Geay, J., Iudicone, D. et al. Helium isotopic constraints on simulated ocean circulations: implications for abyssal theories. Environ Fluid Mech 10, 257–273 (2010). https://doi.org/10.1007/s10652-009-9159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9159-y

Keywords

Navigation