Skip to main content
Log in

On the role of physical modelling in atmospheric and oceanic forecast

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

We discuss how physical modelling can be used to reproduce atmospheric or oceanic flows in the laboratory. The similarity conditions for the effects of density stratification and Earth rotation are first presented. Then examples of results obtained on the large ‘Coriolis’ platform in Grenoble are described. These include topographic wakes in a stratified fluid and gravity currents. Physical modelling is not used to get direct results of practical relevance, but rather to test numerical models on specific processes of environmental flows. Therefore it must be performed in close relationship with theory and numerical modelling, using advanced measurement and data assimilation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer DL, Davies PA (2000) Laboratory studies of orographic effects in rotating and stratified flows. Annu Rev Fluid Mech 32: 165–202. doi:10.1146/annurev.fluid.32.1.165

    Article  Google Scholar 

  2. Boyer DL, Sommeria J, Mitrovic AS, Smirnov S, Haidvoguel DB, Etling D (2006) The effects of boundary turbulence on canyon flows forced by periodic, along-shelf currents. J Phys Oceanogr 36(5): 813–826. doi:10.1175/JPO2866.1

    Article  Google Scholar 

  3. Baines PG (1995) Topographic effects in stratified flows. Cambridge Univ Press, Cambridge, MA

    Google Scholar 

  4. Eiff OS, Bonneton P (2000) Lee-wave breaking over obstacles in stratified flow. Phys Fluids 12: 1073–1086. doi:10.1063/1.870362

    Article  CAS  Google Scholar 

  5. Johnson ER, Esler JG, Rump OJ, Sommeria J, Vilenski GG (2006) Orographically generated nonlinear waves in rotating and nonrotating two-layer flow. Proc R Soc A 462: 3–20. doi:10.1098/rspa.2005.1550

    Article  Google Scholar 

  6. Gostiaux L, Dauxois T, Didelle H, Sommeria J, Viboud S (2006) Quantitative laboratory observations of internal wave reflection on ascending slopes. Phys Fluids 18: 056602. doi:10.1063/1.2197528

    Article  Google Scholar 

  7. Teinturier S, Stegner A, Ghil M, Viboud S, Didelle H INIST http://hdl.handle.net/2042/15598

  8. Orr A, Marshall GJ, Hunt JCR, Sommeria J, Wang CG, van Lipzig NPM, Cresswell D, King JC (2008) Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly.. J Atmos Sci 65: 1396–1413. doi:10.1175/2007JAS2498.1

    Article  Google Scholar 

  9. Praud O, Sommeria J, Fincham A (2006) Decaying grid turbulence in a rotating stratified fluid. J Fluid Mech 547: 389–412. doi:10.1017/S0022112005007068

    Article  Google Scholar 

  10. Ellison TH, Turner JS (1959) Turbulent entrainment in stratified flow. J Fluid Mech 6: 423–448. doi:10.1017/S0022112059000738

    Article  Google Scholar 

  11. Lane-SerffandGF Baines PG (2000) Eddy formation by overflows in stratified water. J Phys Oceanogr 30(2): 327–337. doi:10.1175/1520-0485(2000)030<0327:EFBOIS>2.0.CO;2

    Article  Google Scholar 

  12. Käse RH, Girton JB, Sanford TB (2003) Structure and variability of the Denmark Strait Overflow: model and observations. J Geophys Res 108(C6): 3181. doi:10.1029/2002JC001548

    Article  Google Scholar 

  13. Decamp S, Sommeria J. (2009) Scaling properties for turbulent gravity currents deviated by Coriolis effects on a uniform slope. J Fluid Mech (submitted)

  14. Hallworth MA, Huppert HE, Ungarish M (2001) Axisymmetric gravity currents in a rotating system: experimental and numerical simulations. J Fluid Mech 447: 1–29

    Google Scholar 

  15. Thomas P.J., Linden P.F (2007) Rotating gravity currents: small-scale and large-scale experiments and a geostrophic model. J Fluid Mech 578: 35–65. doi:10.1017/S0022112007004739

    Article  CAS  Google Scholar 

  16. Wahlin A, Darelius E, Cenedese C, Lane-Serff G (2008) Laboratory observations of enhanced entrainment in dense overflows in the presence of submarine canyons and ridges. Deep Sea Res Part I Oceanogr Res Pap 55(6): 737–750. doi:10.1016/j.dsr.2008.02.007

    Article  Google Scholar 

  17. Read PL, Yasuhiro YH, Yamazaki H, lewis SR, Williams PD, Wordsworth R, Miki-Yamazaki K, Sommeria J, Didelle nH (2007) Dynamics of convectively driven jets in the laboratory. J Atmos Sci 64(11): 4031–1052. doi:10.1175/2007JAS2219.1

    Article  Google Scholar 

  18. Galmiche M, Sommeria J, Brasseur P, Verron J (2007) Using data assimilation in laboratory experiments of geophysical flows. J Mar Syst 65(1): 532–539. doi:10.1016/j.jmarsys.2006.01.016

    Article  Google Scholar 

  19. van Os AD, Soulsby R, Kirkegaard J (2004) The future role of experimental methods in European hydraulic research. J Hydraul Res 42(4): 341–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Sommeria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommeria, J. On the role of physical modelling in atmospheric and oceanic forecast. Environ Fluid Mech 8, 485–493 (2008). https://doi.org/10.1007/s10652-008-9112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-008-9112-5

Keywords

Navigation