Skip to main content
Log in

Interaction between flow, transport and vegetation spatial structure

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbulent stress remains elevated within the canopy and suspended sediment concentration is comparable to that in unvegetated regions. In dense canopies turbulent stress is reduced by canopy drag and suspended sediment concentration is also reduced. Further, for dense canopies, the length-scale of turbulence penetration into the canopy, δ e , is shown to predict both the roughness height and the displacement height of the overflow profile. In a second case study, the relation between flow speed and spatial structure of a seagrass meadow gives insight into the stability of different spatial structures, defined by the area fraction covered by vegetation. In the last case study, a momentum balance suggests that in natural channels the total resistance is set predominantly by the area fraction occupied by vegetation, called the blockage factor, with little direct dependence on the specific canopy morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberotanza L, Ravagnan B, Zandonella A (1999) Hyperspectral aerial images. A valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. Int J Remote Sens 20(3): 523–533. doi:10.1080/014311699213316

    Article  Google Scholar 

  2. Barko JW, James W (1998) Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E, Søndergaard Ma, Søndergaard MO, Christoffersen K(eds) The structuring role of submerged macrophytes in lakes. Springer Verlag, New York, pp 197–214

    Google Scholar 

  3. Bostater C, Bassetti L (2004) Detecting submerged features in water: modeling, sensors and measurements. In: Bostater CR, Santoleri R (eds) Remote sensing of the ocean and sea ice. Proceedings of SPIE, 5569. SPIE, Bellingham, WA. doi:10.1117/12.593681

  4. Brown G, Roshko A (1974) On density effects and large structures in turbulent mixing layers. J Fluid Mech 64: 775–816. doi:10.1017/S002211207400190X

    Article  Google Scholar 

  5. Chambers P, Prepas E (1994) Nutrient dynamics in riverbeds: the impact of sewage effluent and aquatic macrophytes. Water Res 28: 453–464. doi:10.1016/0043-1354(94)90283-6

    Article  CAS  Google Scholar 

  6. Champion P, Tanner C (2000) Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441: 1–12. doi:10.1023/A:1017517303221

    Article  Google Scholar 

  7. Chandler M, Colarusso P, Buchsbaum R (1996) A study of eelgrass beds in Boston Harbor and northern Massachusetts bays. Office of Res and Devel, US EPA, Narragansett

    Google Scholar 

  8. Ciraolo G, Ferreri G, LaLoggia G (2006) Flow resistance of Posidonia Oceanica in shallow water. J Hydraul Res 44(2): 189–202

    Google Scholar 

  9. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. doi:10.1038/387253a0

    Article  CAS  Google Scholar 

  10. Duan J, Barkdoll B, French R (2006) Lodging velocity for an emergent aquatic plant in open channels. J Hydrol Eng 132(10): 1015–1020. doi:10.1061/(ASCE)0733-9429(2006)132:10(1015)

    Article  Google Scholar 

  11. Dunn C, Lopez F, Garcia M (1996) Mean flow and turbulence in a laboratory channel with simulated vegetation. Hydraulic Eng Ser 51:U of Ill, Urbana, IL

  12. Enriquez S, Agusti S, Duarto C (1992) Light absorption by seagrass Posidonia oceanica leaves. Mar Ecol Prog Ser 86: 201–204. doi:10.3354/meps086201

    Article  Google Scholar 

  13. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  14. Fonseca M (1998) Exploring the basic pattern expression in seagrass landscape. PhD thesis, University of California, Berkeley

  15. Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 171: 109–121. doi:10.3354/meps171109

    Article  Google Scholar 

  16. Fonseca MS, Fisher JS (1986) A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol Prog Ser 29: 15–22. doi:10.3354/meps029015

    Article  Google Scholar 

  17. Fonseca MS, Zieman JC, Thayer GW, Fisher JS (1983) The role of current velocity in structuring eelgrass (Zostera marina L.) meadows. Estaur Coast Shelf Sci 17: 367–380. doi:10.1016/0272-7714(83)90123-3

    Article  Google Scholar 

  18. Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estaur Coast Shelf Sci 44: 301–310. doi:10.1006/ecss.1996.0120

    Article  CAS  Google Scholar 

  19. Gambi MC, Nowell ARM, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61: 159–169. doi:10.3354/meps061159

    Article  Google Scholar 

  20. Ghisalberti M, Nepf H (2002) Mixing layers and coherent structures in vegetated aquatic flow. J Geophys Res 107(C2). doi: 10.1029/2001JC000871

  21. Ghisalberti M, Nepf H (2004) The limited growth of vegetated shear layers. Water Resour Res 40:W07502. doi: 10.1029/2003WR002776

  22. Ghisalberti M, Nepf H (2005) Mass transfer in vegetated shear flows. Environ Fluid Mech 5(6): 527–551. doi:10.1007/s10652-005-0419-1

    Article  Google Scholar 

  23. Ghisalberti M, Nepf H (2006) The structure of the shear layer over rigid and flexible canopies. Environ Fluid Mech 6(3): 277–301. doi:10.1007/s10652-006-0002-4

    Article  Google Scholar 

  24. Green J (2005) Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Res Appl 21: 671–686. doi:10.1002/rra.854

    Article  Google Scholar 

  25. Green J (2006) Effect of macrophyte spatial variability on channel resistance. Adv Water Resour 29: 426–438. doi:10.1016/j.advwatres.2005.05.010

    Article  Google Scholar 

  26. Grimmond CSB, Oke T (1999) Aerodynamics properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292. doi :10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2

  27. Jackson G, Winant C (1983) Effect of a kelp forest on coastal currents. Cont Shelf Res 2(1): 75–80. doi:10.1016/0278-4343(83)90023-7

    Article  Google Scholar 

  28. Järvelä J (2002) Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J Hydrol (Amst) 269: 44–54. doi:10.1016/S0022-1694(02)00193-2

    Article  Google Scholar 

  29. Jeppesen E, Jensen J, Søndergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408(409): 217–231. doi:10.1023/A:1017071600486

    Article  Google Scholar 

  30. Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36: 173–196. doi:10.1146/annurev.fluid.36.050802.122103

    Article  Google Scholar 

  31. Kadlec R, Knight R (1996) Treatment wetlands. Lewis Publishers, Boca Raton, p 893

    Google Scholar 

  32. Kemp J, Harper D, Crosa G (2000) The habitat-scale ecohydraulics of rivers. Ecol Eng 16: 17–29. doi:10.1016/S0925-8574(00)00073-2

    Article  Google Scholar 

  33. Koch EW (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17. doi:10.2307/1352808

    Article  Google Scholar 

  34. Kouwen N (1990) Modern approach to design of grassed channels. J Irrig Drain 118: 733–743. doi:10.1061/(ASCE)0733-9437(1992)118:5(733)

    Article  Google Scholar 

  35. Kouwen N, Unny T (1973) Flexible roughness in open channels. J Hydraul Div 99(HY5): 713–728

    Google Scholar 

  36. Leonard L, Luther M (1995) Flow hydrodynamics in tidal marsh canopies. Limnol Oceanogr 40: 1474–1484

    Google Scholar 

  37. Lightbody A, Nepf H (2006) Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol Oceanogr 51: 218–228

    Google Scholar 

  38. Lopez F, Garcia M (1998) Open-channel flow through simulated vegetation: suspended sediment transport modeling. Water Resour Res 34(9): 2341–2352. doi:10.1029/98WR01922

    Article  Google Scholar 

  39. Marba N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174: 269–280. doi:10.3354/meps174269

    Article  Google Scholar 

  40. Mars M, Kuruvilla M, Goen H (1999) The role of submergent macrophyte triglochin huegelii in domestic greywater treatment. Ecol Eng 12: 57–66. doi:10.1016/S0925-8574(98)00054-8

    Article  Google Scholar 

  41. Massel S, Furukawa K, Brinkman R (1999) Surface wave propogation in mangrove forests. Fluid Dyn Res 24: 219–249. doi:10.1016/S0169-5983(98)00024-0

    Article  Google Scholar 

  42. Mazda Y, Wolanksi E, King B, Sase A, Ohtsuka D, Magi M (1997) Drag forces due to vegetation in mangrove swamps. Mangr Salt Marsh 1: 193–199. doi:10.1023/A:1009949411068

    Article  Google Scholar 

  43. Meijer DG, van Velzen EH (1998) Prototype-scale flume experiments on hydraulic roughness of submerged vegetation. Technical Report PR 121, HKV Consultants, Lelystad, The Netherlands

  44. Moore KA (2004) Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J Coast Res 20(Special Issue): 162–178

    Google Scholar 

  45. Nepf H, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56(3) (in press)

  46. Nepf H, Ghisalberti M, White B, Murphy E (2007) Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43:W04422. doi:10.1029/2006WR005362

  47. Nepf H, Vivoni E (2000) Flow structure in depth-limited, vegetated flow. J Geophys Res 105(C12): 28547–28557. doi:10.1029/2000JC900145

    Article  Google Scholar 

  48. Nikora V, McEwan I, McLean S, Coleman S, Pokrajac D, Walters R (2007) Double-averaging concept for rough-bed open-channel and oveland flow. J Hydr Eng ASCE 133: 873–883

    Article  Google Scholar 

  49. Nilsson C, Reidy C, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408. doi:10.1126/science.1107887

    Article  CAS  Google Scholar 

  50. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science, 313: 1068–1072. doi:10.1126/science.1128845

    Article  CAS  Google Scholar 

  51. Othman MA (1994) Value of mangroves in coastal protection. Hydrobiologia 285: 277–282. doi:10.1007/BF00005674

    Article  Google Scholar 

  52. Palmer M, Nepf H, Petterson T, Ackerman J (2004) Observations of particle capture on a cylindrical collector: implications for particle accumulation and removal in aquatic systems. Limnol Oceanogr 49: 76–85

    Google Scholar 

  53. Poggi D, Katul G, Albertson J (2004) A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound Lay Metab 111: 615–621. doi:10.1023/B:BOUN.0000016563.76874.47

    Article  Google Scholar 

  54. Poggi D, Porporato A, Ridolfi L, Albertson J, Katul G (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound Lay Metab 111: 565–587. doi:10.1023/B:BOUN.0000016576.05621.73

    Article  Google Scholar 

  55. Raupach M (1992) Drag and drag partition on rough surfaces. Bound Lay Metab 60: 375–395. doi:10.1007/BF00155203

    Article  Google Scholar 

  56. Raupach M (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound Lay Metab 71: 211–216. doi:10.1007/BF00709229

    Article  Google Scholar 

  57. Raupach M, Finnigan J, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound Lay Metab 60: 375–395. doi:10.1007/BF00155203

    Article  Google Scholar 

  58. Raupach M, Shaw R (1982) Averaging procedures for flow within vegetation canopies. Bound Lay Metab 22: 79–90. doi:10.1007/BF00128057

    Article  Google Scholar 

  59. Raupach M, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound Lay Metab 18: 373–397. doi:10.1007/BF00119495

    Article  Google Scholar 

  60. Sabol B, Melton R, Chamberlain R, Doering P, Haunert K (2002) Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries 25(1): 133–141

    Article  Google Scholar 

  61. Schlichting H (1936) Experimental investigation of the problem of surface roughness. NACA Technical Memorandum No 823

  62. Scoffin TP (1970) The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J Sediment Petrol 40: 249–273

    Google Scholar 

  63. Sellin RHJ, Bryant TB, Loveless JH (2003) An improved method for roughening floodplains on physics river models. J Hydraul Res 41: 3–14

    Google Scholar 

  64. Sintes T, Marba N, Duarte CM, Kendrick GA (2005) Nonlinear processes in seagrass colonization explained by simple clonal growth rules. Oikos 108: 165–175. doi:10.1111/j.0030-1299.2005.13331.x

    Article  Google Scholar 

  65. Stauffer D, Aharony A (1985) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  66. Tal M, Paola C (2007) Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geol Soc Am 35: 347–350

    Google Scholar 

  67. Tanino Y, Nepf H (2008) Laboratory investigation on mean drag in a random array of rigid, emergent cylinders. J Hydrol Eng 134(1): 34–41. doi:10.1061/(ASCE)0733-9429(2008)134:1(34)

    Article  Google Scholar 

  68. Tanino Y, Nepf H (2008) Lateral dispersion in random cylinder arrays at high Reynods number. J Fluid Mech 600: 339–371. doi:10.1017/S0022112008000505

    Article  Google Scholar 

  69. Thom A (1971) Momentum absorption by vegetation. Q J R Meteorol Soc 97: 414–428. doi:10.1002/qj.49709741404

    Article  Google Scholar 

  70. Turker U, Yagci O, Kabdasli M (2006) Analysis of coastal damage of a beach profile under the protection of emergent vegetation. Ocean Eng 33: 810–828. doi:10.1016/j.oceaneng.2005.04.019

    Article  Google Scholar 

  71. Valiela I, Teal J, Deuser W (1978) The nature of growth forms in the salt marsh grass Spartina alterniflora. Am Nat 112: 461–470. doi:10.1086/283290

    Article  Google Scholar 

  72. Werner SR, Beardsley RC, Williams AJ (2003) Bottom friction and bed forms on the southern flank of Georges Bank. J Geophys Res 108(C11): 8004. doi:10.1029/2000JC000692

    Article  Google Scholar 

  73. White B, Nepf H (2007) Shear instability and coherent structures in a flow adjacent to a porous layer. J Fluid Mech 593: 1–32

    Article  Google Scholar 

  74. Wilcock R, Champion P, Nagels J, Crocker G (1999) The influence of aquatic macrophytes on the hydraulic and physicochemical properties of a New Zealand lowland stream. Hydrobiologia 416(1): 203–214. doi:10.1023/A:1003837231848

    Article  CAS  Google Scholar 

  75. Wilson C, Stoesser T, Bates P, Bateman Pinzen A (2003) Open channel flow through different forms of submerged flexible vegetation. J Hydrol Eng 129: 847–853. doi:10.1061/(ASCE)0733-9429(2003)129:11(847)

    Article  Google Scholar 

  76. Winant C, Browand F (1974) Vortex pairing, the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J Fluid Mech 63: 237–255. doi:10.1017/S0022112074001121

    Article  Google Scholar 

  77. Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora and Phragmites australis. Estaur Coast Shelf Sci 56: 63–72. doi:10.1016/S0272-7714(02)00121-X

    Article  CAS  Google Scholar 

  78. Wu F-C, Shen H-W, Chou Y-J (1999) Variation of roughness coefficients for unsubmerged and submerged vegetation. J Hydrol Eng 125(9): 934–942. doi:10.1061/(ASCE)0733-9429(1999)125:9(934)

    Article  Google Scholar 

  79. Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements for eelgrass. Plant Physiol 115: 599–607

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Nepf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luhar, M., Rominger, J. & Nepf, H. Interaction between flow, transport and vegetation spatial structure. Environ Fluid Mech 8, 423–439 (2008). https://doi.org/10.1007/s10652-008-9080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-008-9080-9

Keywords

Navigation