Advertisement

Interaction between flow, transport and vegetation spatial structure

  • Mitul Luhar
  • Jeffrey Rominger
  • Heidi NepfEmail author
Original Article

Abstract

This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbulent stress remains elevated within the canopy and suspended sediment concentration is comparable to that in unvegetated regions. In dense canopies turbulent stress is reduced by canopy drag and suspended sediment concentration is also reduced. Further, for dense canopies, the length-scale of turbulence penetration into the canopy, δ e , is shown to predict both the roughness height and the displacement height of the overflow profile. In a second case study, the relation between flow speed and spatial structure of a seagrass meadow gives insight into the stability of different spatial structures, defined by the area fraction covered by vegetation. In the last case study, a momentum balance suggests that in natural channels the total resistance is set predominantly by the area fraction occupied by vegetation, called the blockage factor, with little direct dependence on the specific canopy morphology.

Keywords

Vegetated flow Channel resistance Submerged canopies Vegetion-flow feedbacks Spatial structure in seagrass meadows Blockage factor Mannings resistance with vegetation Channelizationin seagrass meadows Percolation theory applied to seagrass meadows 

References

  1. 1.
    Alberotanza L, Ravagnan B, Zandonella A (1999) Hyperspectral aerial images. A valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. Int J Remote Sens 20(3): 523–533. doi: 10.1080/014311699213316 CrossRefGoogle Scholar
  2. 2.
    Barko JW, James W (1998) Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen E, Søndergaard Ma, Søndergaard MO, Christoffersen K(eds) The structuring role of submerged macrophytes in lakes. Springer Verlag, New York, pp 197–214Google Scholar
  3. 3.
    Bostater C, Bassetti L (2004) Detecting submerged features in water: modeling, sensors and measurements. In: Bostater CR, Santoleri R (eds) Remote sensing of the ocean and sea ice. Proceedings of SPIE, 5569. SPIE, Bellingham, WA. doi: 10.1117/12.593681
  4. 4.
    Brown G, Roshko A (1974) On density effects and large structures in turbulent mixing layers. J Fluid Mech 64: 775–816. doi: 10.1017/S002211207400190X CrossRefGoogle Scholar
  5. 5.
    Chambers P, Prepas E (1994) Nutrient dynamics in riverbeds: the impact of sewage effluent and aquatic macrophytes. Water Res 28: 453–464. doi: 10.1016/0043-1354(94)90283-6 CrossRefGoogle Scholar
  6. 6.
    Champion P, Tanner C (2000) Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia 441: 1–12. doi: 10.1023/A:1017517303221 CrossRefGoogle Scholar
  7. 7.
    Chandler M, Colarusso P, Buchsbaum R (1996) A study of eelgrass beds in Boston Harbor and northern Massachusetts bays. Office of Res and Devel, US EPA, NarragansettGoogle Scholar
  8. 8.
    Ciraolo G, Ferreri G, LaLoggia G (2006) Flow resistance of Posidonia Oceanica in shallow water. J Hydraul Res 44(2): 189–202Google Scholar
  9. 9.
    Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. doi: 10.1038/387253a0 CrossRefGoogle Scholar
  10. 10.
    Duan J, Barkdoll B, French R (2006) Lodging velocity for an emergent aquatic plant in open channels. J Hydrol Eng 132(10): 1015–1020. doi: 10.1061/(ASCE)0733-9429(2006)132:10(1015) CrossRefGoogle Scholar
  11. 11.
    Dunn C, Lopez F, Garcia M (1996) Mean flow and turbulence in a laboratory channel with simulated vegetation. Hydraulic Eng Ser 51:U of Ill, Urbana, ILGoogle Scholar
  12. 12.
    Enriquez S, Agusti S, Duarto C (1992) Light absorption by seagrass Posidonia oceanica leaves. Mar Ecol Prog Ser 86: 201–204. doi: 10.3354/meps086201 CrossRefGoogle Scholar
  13. 13.
    Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi: 10.1146/annurev.fluid.32.1.519 CrossRefGoogle Scholar
  14. 14.
    Fonseca M (1998) Exploring the basic pattern expression in seagrass landscape. PhD thesis, University of California, BerkeleyGoogle Scholar
  15. 15.
    Fonseca MS, Bell SS (1998) Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 171: 109–121. doi: 10.3354/meps171109 CrossRefGoogle Scholar
  16. 16.
    Fonseca MS, Fisher JS (1986) A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol Prog Ser 29: 15–22. doi: 10.3354/meps029015 CrossRefGoogle Scholar
  17. 17.
    Fonseca MS, Zieman JC, Thayer GW, Fisher JS (1983) The role of current velocity in structuring eelgrass (Zostera marina L.) meadows. Estaur Coast Shelf Sci 17: 367–380. doi: 10.1016/0272-7714(83)90123-3 CrossRefGoogle Scholar
  18. 18.
    Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estaur Coast Shelf Sci 44: 301–310. doi: 10.1006/ecss.1996.0120 CrossRefGoogle Scholar
  19. 19.
    Gambi MC, Nowell ARM, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61: 159–169. doi: 10.3354/meps061159 CrossRefGoogle Scholar
  20. 20.
    Ghisalberti M, Nepf H (2002) Mixing layers and coherent structures in vegetated aquatic flow. J Geophys Res 107(C2). doi:  10.1029/2001JC000871
  21. 21.
    Ghisalberti M, Nepf H (2004) The limited growth of vegetated shear layers. Water Resour Res 40:W07502. doi:  10.1029/2003WR002776
  22. 22.
    Ghisalberti M, Nepf H (2005) Mass transfer in vegetated shear flows. Environ Fluid Mech 5(6): 527–551. doi: 10.1007/s10652-005-0419-1 CrossRefGoogle Scholar
  23. 23.
    Ghisalberti M, Nepf H (2006) The structure of the shear layer over rigid and flexible canopies. Environ Fluid Mech 6(3): 277–301. doi: 10.1007/s10652-006-0002-4 CrossRefGoogle Scholar
  24. 24.
    Green J (2005) Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Res Appl 21: 671–686. doi: 10.1002/rra.854 CrossRefGoogle Scholar
  25. 25.
    Green J (2006) Effect of macrophyte spatial variability on channel resistance. Adv Water Resour 29: 426–438. doi: 10.1016/j.advwatres.2005.05.010 CrossRefGoogle Scholar
  26. 26.
    Grimmond CSB, Oke T (1999) Aerodynamics properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292. doi :10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2Google Scholar
  27. 27.
    Jackson G, Winant C (1983) Effect of a kelp forest on coastal currents. Cont Shelf Res 2(1): 75–80. doi: 10.1016/0278-4343(83)90023-7 CrossRefGoogle Scholar
  28. 28.
    Järvelä J (2002) Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J Hydrol (Amst) 269: 44–54. doi: 10.1016/S0022-1694(02)00193-2 CrossRefGoogle Scholar
  29. 29.
    Jeppesen E, Jensen J, Søndergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408(409): 217–231. doi: 10.1023/A:1017071600486 CrossRefGoogle Scholar
  30. 30.
    Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36: 173–196. doi: 10.1146/annurev.fluid.36.050802.122103 CrossRefGoogle Scholar
  31. 31.
    Kadlec R, Knight R (1996) Treatment wetlands. Lewis Publishers, Boca Raton, p 893Google Scholar
  32. 32.
    Kemp J, Harper D, Crosa G (2000) The habitat-scale ecohydraulics of rivers. Ecol Eng 16: 17–29. doi: 10.1016/S0925-8574(00)00073-2 CrossRefGoogle Scholar
  33. 33.
    Koch EW (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17. doi: 10.2307/1352808 CrossRefGoogle Scholar
  34. 34.
    Kouwen N (1990) Modern approach to design of grassed channels. J Irrig Drain 118: 733–743. doi: 10.1061/(ASCE)0733-9437(1992)118:5(733) CrossRefGoogle Scholar
  35. 35.
    Kouwen N, Unny T (1973) Flexible roughness in open channels. J Hydraul Div 99(HY5): 713–728Google Scholar
  36. 36.
    Leonard L, Luther M (1995) Flow hydrodynamics in tidal marsh canopies. Limnol Oceanogr 40: 1474–1484Google Scholar
  37. 37.
    Lightbody A, Nepf H (2006) Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol Oceanogr 51: 218–228Google Scholar
  38. 38.
    Lopez F, Garcia M (1998) Open-channel flow through simulated vegetation: suspended sediment transport modeling. Water Resour Res 34(9): 2341–2352. doi: 10.1029/98WR01922 CrossRefGoogle Scholar
  39. 39.
    Marba N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol Prog Ser 174: 269–280. doi: 10.3354/meps174269 CrossRefGoogle Scholar
  40. 40.
    Mars M, Kuruvilla M, Goen H (1999) The role of submergent macrophyte triglochin huegelii in domestic greywater treatment. Ecol Eng 12: 57–66. doi: 10.1016/S0925-8574(98)00054-8 CrossRefGoogle Scholar
  41. 41.
    Massel S, Furukawa K, Brinkman R (1999) Surface wave propogation in mangrove forests. Fluid Dyn Res 24: 219–249. doi: 10.1016/S0169-5983(98)00024-0 CrossRefGoogle Scholar
  42. 42.
    Mazda Y, Wolanksi E, King B, Sase A, Ohtsuka D, Magi M (1997) Drag forces due to vegetation in mangrove swamps. Mangr Salt Marsh 1: 193–199. doi: 10.1023/A:1009949411068 CrossRefGoogle Scholar
  43. 43.
    Meijer DG, van Velzen EH (1998) Prototype-scale flume experiments on hydraulic roughness of submerged vegetation. Technical Report PR 121, HKV Consultants, Lelystad, The NetherlandsGoogle Scholar
  44. 44.
    Moore KA (2004) Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J Coast Res 20(Special Issue): 162–178Google Scholar
  45. 45.
    Nepf H, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56(3) (in press)Google Scholar
  46. 46.
    Nepf H, Ghisalberti M, White B, Murphy E (2007) Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43:W04422. doi: 10.1029/2006WR005362
  47. 47.
    Nepf H, Vivoni E (2000) Flow structure in depth-limited, vegetated flow. J Geophys Res 105(C12): 28547–28557. doi: 10.1029/2000JC900145 CrossRefGoogle Scholar
  48. 48.
    Nikora V, McEwan I, McLean S, Coleman S, Pokrajac D, Walters R (2007) Double-averaging concept for rough-bed open-channel and oveland flow. J Hydr Eng ASCE 133: 873–883CrossRefGoogle Scholar
  49. 49.
    Nilsson C, Reidy C, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408. doi: 10.1126/science.1107887 CrossRefGoogle Scholar
  50. 50.
    Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science, 313: 1068–1072. doi: 10.1126/science.1128845 CrossRefGoogle Scholar
  51. 51.
    Othman MA (1994) Value of mangroves in coastal protection. Hydrobiologia 285: 277–282. doi: 10.1007/BF00005674 CrossRefGoogle Scholar
  52. 52.
    Palmer M, Nepf H, Petterson T, Ackerman J (2004) Observations of particle capture on a cylindrical collector: implications for particle accumulation and removal in aquatic systems. Limnol Oceanogr 49: 76–85Google Scholar
  53. 53.
    Poggi D, Katul G, Albertson J (2004) A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound Lay Metab 111: 615–621. doi: 10.1023/B:BOUN.0000016563.76874.47 CrossRefGoogle Scholar
  54. 54.
    Poggi D, Porporato A, Ridolfi L, Albertson J, Katul G (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound Lay Metab 111: 565–587. doi: 10.1023/B:BOUN.0000016576.05621.73 CrossRefGoogle Scholar
  55. 55.
    Raupach M (1992) Drag and drag partition on rough surfaces. Bound Lay Metab 60: 375–395. doi: 10.1007/BF00155203 CrossRefGoogle Scholar
  56. 56.
    Raupach M (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound Lay Metab 71: 211–216. doi: 10.1007/BF00709229 CrossRefGoogle Scholar
  57. 57.
    Raupach M, Finnigan J, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound Lay Metab 60: 375–395. doi: 10.1007/BF00155203 CrossRefGoogle Scholar
  58. 58.
    Raupach M, Shaw R (1982) Averaging procedures for flow within vegetation canopies. Bound Lay Metab 22: 79–90. doi: 10.1007/BF00128057 CrossRefGoogle Scholar
  59. 59.
    Raupach M, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound Lay Metab 18: 373–397. doi: 10.1007/BF00119495 CrossRefGoogle Scholar
  60. 60.
    Sabol B, Melton R, Chamberlain R, Doering P, Haunert K (2002) Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries 25(1): 133–141CrossRefGoogle Scholar
  61. 61.
    Schlichting H (1936) Experimental investigation of the problem of surface roughness. NACA Technical Memorandum No 823Google Scholar
  62. 62.
    Scoffin TP (1970) The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J Sediment Petrol 40: 249–273Google Scholar
  63. 63.
    Sellin RHJ, Bryant TB, Loveless JH (2003) An improved method for roughening floodplains on physics river models. J Hydraul Res 41: 3–14Google Scholar
  64. 64.
    Sintes T, Marba N, Duarte CM, Kendrick GA (2005) Nonlinear processes in seagrass colonization explained by simple clonal growth rules. Oikos 108: 165–175. doi: 10.1111/j.0030-1299.2005.13331.x CrossRefGoogle Scholar
  65. 65.
    Stauffer D, Aharony A (1985) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  66. 66.
    Tal M, Paola C (2007) Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geol Soc Am 35: 347–350Google Scholar
  67. 67.
    Tanino Y, Nepf H (2008) Laboratory investigation on mean drag in a random array of rigid, emergent cylinders. J Hydrol Eng 134(1): 34–41. doi: 10.1061/(ASCE)0733-9429(2008)134:1(34) CrossRefGoogle Scholar
  68. 68.
    Tanino Y, Nepf H (2008) Lateral dispersion in random cylinder arrays at high Reynods number. J Fluid Mech 600: 339–371. doi: 10.1017/S0022112008000505 CrossRefGoogle Scholar
  69. 69.
    Thom A (1971) Momentum absorption by vegetation. Q J R Meteorol Soc 97: 414–428. doi: 10.1002/qj.49709741404 CrossRefGoogle Scholar
  70. 70.
    Turker U, Yagci O, Kabdasli M (2006) Analysis of coastal damage of a beach profile under the protection of emergent vegetation. Ocean Eng 33: 810–828. doi: 10.1016/j.oceaneng.2005.04.019 CrossRefGoogle Scholar
  71. 71.
    Valiela I, Teal J, Deuser W (1978) The nature of growth forms in the salt marsh grass Spartina alterniflora. Am Nat 112: 461–470. doi: 10.1086/283290 CrossRefGoogle Scholar
  72. 72.
    Werner SR, Beardsley RC, Williams AJ (2003) Bottom friction and bed forms on the southern flank of Georges Bank. J Geophys Res 108(C11): 8004. doi: 10.1029/2000JC000692 CrossRefGoogle Scholar
  73. 73.
    White B, Nepf H (2007) Shear instability and coherent structures in a flow adjacent to a porous layer. J Fluid Mech 593: 1–32CrossRefGoogle Scholar
  74. 74.
    Wilcock R, Champion P, Nagels J, Crocker G (1999) The influence of aquatic macrophytes on the hydraulic and physicochemical properties of a New Zealand lowland stream. Hydrobiologia 416(1): 203–214. doi: 10.1023/A:1003837231848 CrossRefGoogle Scholar
  75. 75.
    Wilson C, Stoesser T, Bates P, Bateman Pinzen A (2003) Open channel flow through different forms of submerged flexible vegetation. J Hydrol Eng 129: 847–853. doi: 10.1061/(ASCE)0733-9429(2003)129:11(847) CrossRefGoogle Scholar
  76. 76.
    Winant C, Browand F (1974) Vortex pairing, the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J Fluid Mech 63: 237–255. doi: 10.1017/S0022112074001121 CrossRefGoogle Scholar
  77. 77.
    Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora and Phragmites australis. Estaur Coast Shelf Sci 56: 63–72. doi: 10.1016/S0272-7714(02)00121-X CrossRefGoogle Scholar
  78. 78.
    Wu F-C, Shen H-W, Chou Y-J (1999) Variation of roughness coefficients for unsubmerged and submerged vegetation. J Hydrol Eng 125(9): 934–942. doi: 10.1061/(ASCE)0733-9429(1999)125:9(934) CrossRefGoogle Scholar
  79. 79.
    Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements for eelgrass. Plant Physiol 115: 599–607Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Parsons Laboratory, Bldgy 48-216DMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations