Skip to main content

Advertisement

Log in

Modeling mercury emissions from forest fires in the Mediterranean region

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Mercury emissions from forest fires in countries bordering the Mediterranean Sea have been estimated on the basis of satellite observations for the year 2006. The assessment has been done by means of the Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD12Q1, MOD14A2, MOD15A2, MOD44B). Estimates show that wild fires have burnt 310,268 ha in the Region, affecting by 45% the Mixed Forest and by 37% the Evergreen Needleleaf Forest and the Evergreen Broadleaf Forest. The amount of biomass burned was about 66,000 Mg for the Evergreen Needleleaf Forest, 72,000 Mg for the Evergreen Broadleaf Forest and 196,000 Mg for the Mixed Forest. The total amount of mercury released to the atmosphere in the Mediterranean countries accounted for 4.3 Mg year−1 with Italy, France, Austria, Bulgaria, Algeria, Spain and Croatia being the most contributing countries with annual emission ranging from 330 to 970 kg year−1. The maximum release of Gaseous Elemental Mercury (GEM) and particulate mercury (Hg(p)) in the region occurred in July with 1,218 kg. The uncertainty of our estimates is comparable with that associated to current assessments of mercury emissions from major industrial sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeyev VA, Birdsey RA (1998) Carbon storage in forests and peatlands of Russia. Gen Tech Rep NE-244. US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor, 137 pp

  2. Brunke EG, Labuschagne C, Slemr F (2001) Gaseous Hg emissions from a fire in the Cape Peninsula, South Africa, during January 2000. Geophys Res Lett 28(8): 1483–1486

    Article  CAS  Google Scholar 

  3. Carvalho JA, Higuchi N, Araujo T, Santos JC (1998) Combustion completeness in a rain forest clearing experiment in Manaus, Brazil. J Geophys Res 103(D11): 13195–13200

    Article  CAS  Google Scholar 

  4. Chen JM, Pavlic G, Brown L, Cihlar J, Leblanc SG, White HP, Hall RJ, Peddle DR, King DJ, Trofymo JA, Swift E, Vander Sanden J, Pellikka PKE (2002) Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens Environ 80(1): 165–184

    Article  Google Scholar 

  5. Chiesi M, Maselli F, Bindi M, Fibbi L, Cherubini P, Arlotta E, Tirone G, Matteucci G, Seufert G (2005) Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements. Agr Forest Meteorol 135: 22–34

    Article  Google Scholar 

  6. Chuvieco E, Cocero D, Riaño D, Martin P, Martínez-Vega J, de la Riva J, Pérez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92: 322–331

    Article  Google Scholar 

  7. Chuvieco E, Ventura G, Martin P, Gómez I (2005) Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sens Environ 94: 450–462

    Article  Google Scholar 

  8. Cinnirella S, Pirrone N (2006) Spatial and temporal distribution of mercury emission from forest fires in Mediterranean region and Russian federation. Atmos Environ 40: 7346–7361

    Article  CAS  Google Scholar 

  9. Conard SG, Ivanova GA (1997) Wildfire in russian boreal forests-potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ Pollut 98(3): 305–313

    Article  CAS  Google Scholar 

  10. Dastoor Ashu P, Larocque Y (2004) Global circulation of atmospheric mercury: a modelling study. Atmos Environ 38(1): 147–161

    Article  Google Scholar 

  11. Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37(12): 1613–1622

    Article  CAS  Google Scholar 

  12. Ericksen JA, Gustin MS (2004) Foliar exchange of mercury as a function of soil and air mercury concentrations. Sci Total Environ 324: 271–279

    Article  CAS  Google Scholar 

  13. FAO (2000) Forest Resources Assessment 2000—Global synthesis. FAO Forestry Paper 140, Rome

  14. Fearnside PM, Lima de Alencastro Graça PM, Alves Rodriguez FJ (2001) Burning of Amazonian rainforests: burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. Forest Ecol Manag 146: 115–128

    Article  Google Scholar 

  15. French NHF, Kasischke ES, Stocks ES, Mudd JP, Martell DL, Lee BS (2000) Carbon release from fires in the North American Boreal forest. In: Kasischke ES, Stocks BJ(eds) Fire, climate change and carbon cycling in the Boreal forest. Springer-Verlag, New York, pp 377–388

    Google Scholar 

  16. Friedli HR, Radke LF, Lu JY (2001) Mercury in smoke from biomass fires. Geophys Res Lett 28(17): 3223–3226

    Article  CAS  Google Scholar 

  17. Friedli HR, Radke LF, Lu JY, Banic CM, Leaitch WR, MacPherson JI (2003) Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmos Environ 37(2): 253–267

    Article  CAS  Google Scholar 

  18. Friedli HR, Radke LF, Payne NJ, McRae DJ, Lynham TJ, Blake TW (2007) Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert National Park, Saskatchewan, Canada. J Geophys Res B 112: G01004

    Article  Google Scholar 

  19. Frohn LM, Christensen JH, Brandt J, Hertel O (2001) Development of a high resolution integrated nested model for studying air pollution in Denmark. Phys Chem Earth PT B 26(10): 769–774

    Google Scholar 

  20. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87: 273–282

    Article  Google Scholar 

  21. Giglio L (2005) MODIS collection 4 active fire product user’s guide v. 2.2. Available at: www.modis-fire.umd.edu/

  22. Gracia C, Vayreda J, Sabaté S, Ibáñez y J (2004) Main components of the aboveground biomass expansion factors. COST E21 task force meeting on Biomass Expansion Factors (BEFs) and allometric biomass equations. Available at: www.efi.fi/coste21

  23. Gustin MS, Lindberg S (2005) Terrestrial Hg fluxes: is the net exchange up, down, or neither? In: Pirrone N, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales. Atmospheric Processes, Human Health and policy. Springer Verlag Publishers, Norwell, pp 241–261

  24. Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7: 1–15

    Article  Google Scholar 

  25. Hedgecock IM, Pirrone N (2004) Chasing quicksilver: modeling the atmospheric lifetime of in the marine boundary layer. Environ Sci Technol 38: 69–76

    Article  CAS  Google Scholar 

  26. Hedgecock IM, Trunfio GA, Pirrone N, Sprovieri F (2005) Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model. Atmos Environ 39(38): 7217–7230

    Article  CAS  Google Scholar 

  27. Hedgecock IM, Pirrone N, Trunfio GA, Sprovieri F (2006) Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. J Geophys Res 111 (D20302). doi: 10.1029/2006JD007117

  28. JRC (2006) Forest Fires in Europe 2005. Report, 6, JRC-IES, pp 53

  29. Justice C, Giglio L, Boschetti L, Roy D, Csiszar I, Morisette J, Kaufman Y, (1999) MODIS fire products. Product (MOD14) algorithm theoretical basis document v. 2.3:34 pp. Available at: www.eospso.gsfc.nasa.gov/atbd/modistables.html

  30. Kasischke ES, French NHF, Bourgeau-Chavez LL, Christensen NL Jr (1995) Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J Geophys Res 100: 2941–2951

    Article  CAS  Google Scholar 

  31. Kite GW, Haberlandt U (1999) Atmospheric model data for macroscale hydrology. J Hydrol 217(3–4): 303–313

    Article  Google Scholar 

  32. Knyazikhin Y, Glassy J, Privette JL, Tian Y, Lotsch A, Zhang Y, Wang Y, Morisette JT, Votava P, Myneni RB, Nemani RR, Running SW (1999) MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document v. 4.0:130 pp. Available at: www.eospso.gsfc.nasa.gov/atbd/modistables.html

  33. Korontzi S (2005) Seasonal patterns in biomass burning emissions from southern African vegetation fires for the year 2000. Glob Change Biol 11: 1680–1700

    Article  Google Scholar 

  34. Kühlwein J, Wickert B, Trukenmüller A, Theloke J, Friedrich R (2002) Emission modelling in high spatial and temporal resolution and calculation of pollutant concentrations for comparisons with measured concentrations. Atmos Environ 36(S1): 7–18

    Article  Google Scholar 

  35. Lehtonen A, Mäkipää R, Muukkonen P (2004) Biomass expansion factors. COST E21 Task Force Meeting on Biomass expansion factors (BEFs) and allometric biomass equations Available at: www.efi.fi/coste21

  36. Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36: 19–32

    Article  Google Scholar 

  37. Liousse C, Andreae MO, Artaxo P, Barbosa P, Cachier H, Grégoire JM, Hobbs P, Lavoué D, Mouillot F, Penner J, Scholes M, Schultz MG (2004) Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions. In: Granier C, Artaxo P, Reeves CE (eds) Emissions of atmospheric trace compounds, advances in Global Change Research, Kluwer Academic Publisher, 560 pp

  38. Michel C, Liousse C, Gregoire JM, Tansey K, Carmichael GR, Woo JH (2005) Biomass burning emission inventory from burnt area data given by the SPOT-Vegetation system in the frame of TRACE-P and ACE-Asia campaigns. J Geophys Res 110: D09304

    Article  Google Scholar 

  39. Muukkonen P (2004) Generalised allometric volume and biomass functions for some European tree species. COST E21 Task Force Meeting on Biomass expansion factors (BEFs) and allometric biomass equations Available at: www.efi.fi/coste21

  40. Muukkonen P, Heiskanen J (2005) Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sens Environ 99(4): 434–447

    Article  Google Scholar 

  41. Muukkonen P, Heiskanen J (2006) Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sens Environ. doi: 10.1016/j.rse.2006.10.011

  42. Pacyna EG, Pacyna JM, Pirrone N (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35(17): 2987–2996

    Article  CAS  Google Scholar 

  43. Pacyna JM, Munthe J, Larjava K, Pacyna EG (2005) Mercury emissions from anthropogenic sources: estimates and measurements for Europe. In: Pirrone N, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales. Atmospheric processes, human health and policy. Springer Verlag Publishers, Norwell, MA, USA, pp 51–64

  44. Palumbo I (2005) The use of MODIS data for the estimation of burned biomass in forest fires: a case study over Southern Europe. BBSO Workshop—Burnt Biomass and Satellite Observations, pp 14–15 December. Available at: www2.nilu.no/portal/publications/accent-publications

  45. Pereira JMC, Sa ACL, Sousa AMO, Silva JMN, Santos TN, Carreiras JMB (1999) Spectral characterisation and discrimination of burnt areas. In: Chuvieco E(eds) Remote sensing of large wildfires in the European Mediterranean Basin. Springer, New York, pp 123–138

    Google Scholar 

  46. Pirrone N, Keeler GJ, Nriagu JO (1996) Regional Differences in Worldwide Emissions of Mercury to the Atmosphere. Atmos Environ 30: 2981–2987

    Article  CAS  Google Scholar 

  47. Pirrone N, Pacyna JM, Barth H (2001) Atmospheric mercury research in Europe. Atmos Environ 35(17): 2997–3006

    Article  CAS  Google Scholar 

  48. Pirrone N, Ferrara R, Hedgecock IM, Kallos G, Mamane Y, Munthe J, Pacyna JM, Pytharoulis I, Sprovieri F, Voudouri A, Wangberg I (2003) Dynamic processes of mercury over the Mediterranean region: results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project. Atmos Environ 37(S1): 21–39

    Article  Google Scholar 

  49. Pirrone N, Mahaffey K (2005) Where we stand on mercury pollution and its health effects on regional and global scales. In: Pirrone N, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales. Atmospheric processes, human health and policy. Springer Verlag Publishers, Norwell, pp 1–21

  50. Pirrone N, Sprovieri S, Hedgecock IM, Trunfio A, Cinnirella S (2005) Dynamic processes of atmospheric mercury and its species in the Mediterranean region. In: Pirrone N, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales. Atmospheric processes, human health and policy. Springer Verlag Publishers, Norwell, pp 541–579

  51. Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37: 5115–5124

    Article  CAS  Google Scholar 

  52. Rea AW, Keeler GJ, Scherbatskoy T (1996) The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: a short-term study. Atmos Environ 30(19): 3257–3263

    Article  CAS  Google Scholar 

  53. Rea AW, Lindberg SE, Scherbatskoy T (2002) Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water Air Soil Pollut 133(1–4): 49–67

    Article  CAS  Google Scholar 

  54. Remmel TK, Perera AH (2001) Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection. Forest Ecology and Management 152(1–3): 119–129

    Article  Google Scholar 

  55. Rich PB, Turner DP, Bolstad P (1999) An approach to spatially-distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products. Remote Sens Environ 70: 69–81

    Article  Google Scholar 

  56. Rogan J, Franklin J (2001) Mapping wildfire burn severity in southern California forests and shrublands using enhanced Thematic Mapper imagery. Geocarto Int 16(4): 89–99

    Article  Google Scholar 

  57. Roulet M, Lucotte M, Farella N, Serique G, Coelho H, Sousa Passos CJ, DeJesusda Silva E, Scavonede Andrade P, Mergler D, Guimarães J-RD, Amorim M (1999) Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water Air Soil Pollut 112: 297–313

    Article  CAS  Google Scholar 

  58. Salajanu D, Jacobs DM (2005) Assessing biomass and forest area classifications from MODIS satellite data while incrementing the number of FIA data panels. In: Proceedings Global Priorities in Land Remote Sensing Sioux Falls, South Dakota, October 23–27

  59. Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Sci 43(3): 424–434

    Google Scholar 

  60. Schwesig D, Krebs O (2003) The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant Soil 253: 445–455

    Article  CAS  Google Scholar 

  61. Shvidenko AZ, Nilsson S (2000) Fire and the carbon budget of Russian forests. In: Kasischke ES, Stocks BJ(eds) Fire, climate change and carbon cycling in the Boreal forest. Springer-Verlag, New York, pp 289–311

    Google Scholar 

  62. Sigler JM, Lee X, Munger W (2003) Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environ Sci Technol 37: 4343–4347

    Article  CAS  Google Scholar 

  63. Strahler A, Muchoney D, Borak J, Friedl M, Gopal S, Lambin E, Moody A (1999) MODIS Land Cover and Land-Cover Change. MODIS Land Cover. Product (MOD12) Algorithm theoretical basis document v. 5.0:72 pp. Available at: www.eospso.gsfc.nasa.gov/atbd/modistables.html

  64. Turetsky MR, Harden J, Friedli HR, Flannigan M, Payne N, Crock J, Radke L (2006) Wildfires threaten mercury stocks in northern soils. Geophys Res Lett 33: L16403. doi: 101029/2005GL025595

  65. Turner DP, Ollinger S, Smith M-L, Krankina O, Gregory M (2004) Scaling net primary production to a MODIS footprint in support of Earth observing system product validation. Int J Remote Sens 25(10): 1961–1979

    Article  Google Scholar 

  66. Veiga MM, Meech JA, Onante N (1994) Mercury pollution from deforestation. Nature 368: 816–817

    Article  CAS  Google Scholar 

  67. Ward DE, Susott RA, Kauffman JB, Babbitt RE, Cummings DL, Dias B, Holben BN, Kaufman YJ, Rasmussen RA, Setzer AW (1992) Smoke and fire characteristics for Cerrado and deforestation burns in Brazil BASE-B Experiment. J Geophys Res 97(D13): 14601–14619

    Google Scholar 

  68. Ward DE, Hao WM, Susott RA, Babbitt RA, Shea RW, Kauffman JB, Justice CO (1996) Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. J Geophys Res 101(D19): 23569–23576

    Article  CAS  Google Scholar 

  69. Wiedinmyer C, Quayleb B, Geronc C, Belotea A, McKenzied D, Zhange X, O’Neillf S, Klos Wynnea K (2006) Estimating emissions from fires in North America for air quality modelling. Atmos Environ 40: 3419–3432

    Article  CAS  Google Scholar 

  70. Zhang X, Kondragunta S (2006) Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophys Res Lett 33:L09402:5 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Cinnirella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinnirella, S., Pirrone, N., Allegrini, A. et al. Modeling mercury emissions from forest fires in the Mediterranean region. Environ Fluid Mech 8, 129–145 (2008). https://doi.org/10.1007/s10652-007-9048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-007-9048-1

Keywords

Navigation