Advertisement

Environmental Fluid Mechanics

, Volume 8, Issue 2, pp 101–116 | Cite as

Atmospheric mercury at mediterranean coastal stations

  • Ingvar Wängberg
  • John Munthe
  • David Amouroux
  • Maria E. Andersson
  • Vesna Fajon
  • Romano Ferrara
  • Katarina Gårdfeldt
  • Milena Horvat
  • Yaacov Mamane
  • Ety Melamed
  • Mathilde Monperrus
  • Nives Ogrinc
  • Osnat Yossef
  • Nicola Pirrone
  • Jonas Sommar
  • Francesca Sprovieri
Original Article

Abstract

Mercury in air has been measured at five coastal Mediterranean sites, involving measurements in Spain, France, Italy, Slovenia and Israel. Four two-weeks long measurements campaigns were performed at the five sites. The measurements were carried out during autumn 2003 and winter, spring and summer 2004. Total gaseous mercury/elemental gaseous mercury, particulate mercury and divalent gaseous mercury were measured in parallel at the five sites. The activities constituted a subtask of the EU funded MERCYMS research project, which also included Mediterranean Sea cruises where both mercury in air and water were measured. The result from an evaluation of all the coastal air data is presented. Mercury concentrations from the different sites are compared with similar data obtained in northern Europe and elsewhere. The result shows that the background concentration of mercury in Mediterranean coastal air is lower than earlier anticipated. Background concentrations of TGM, RGM and TPM corresponded to 1.75–1.80 ng m−3, 1–13 and 3–23 pg m−3, respectively. The measurements also showed that the mercury concentration occasionally can be very high in some areas due to local anthropogenic emissions. It is proposed that diurnal variation in RGM concentrations observed during situation with nocturnal inversion merely is an effect of meteorology rather than due to local photochemistry.

Keywords

Atmospheric mercury Mercury deposition RGM TGM TPM 

List of Abbreviations

RGM

Reactive gaseous mercury

TGM

Total gaseous mercury

TPM

Total particulate mercury

GEM

Gaseous elemental mercury (Hg0)

CVAFS

Cold vapour atomic fluorescence spectrometer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slemr F, Brunke E-G, Ebinghaus R, Temme C, Munthe J, Wängberg I, Schroeder W, Steffen A and Berg T (2003). Worldwide trend of atmospheric mercury since 1977. Geophys Res Lett 30(10): 1561 CrossRefGoogle Scholar
  2. 2.
    Schroeder WH and Munthe J (1998). Atmospheric Murcury–an overwiew. Atmos Environ 32: 809–822 CrossRefGoogle Scholar
  3. 3.
    Lamborg CH, Fitzgerald WF, O’Donnell J and Torgersen T (2002). A non-steady-state compartment model of global-scale mercury biochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta 66(7): 1105–1118 CrossRefGoogle Scholar
  4. 4.
    Wängberg I, Munthe J, Ebinghaus R, Gårdfeldt K, Iverfeldt Å and Sommar J (2003). Distribution of TPM in Northern Europe. Sci Total Environ 304: 53–59 CrossRefGoogle Scholar
  5. 5.
    Bloom NS and Fitzgerald WF (1988). Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold vapor atomic fluorescence detection. Anal Chimica Acta 209: 151–161 CrossRefGoogle Scholar
  6. 6.
    Brosset C (1987). The behaviour of mercury in the physical environment. Water Air Soil Pollut 34: 145–166 CrossRefGoogle Scholar
  7. 7.
    Ebinghaus R, Jennings SG, Schroeder WH, Berg T, Donaghy T, Guentzel J, Kenny C, Kock HH, Kvietkus K, Landing W, Munthe J, Prestbo EM, Schneeberger D, Slemr F, Sommar J, Urba A, Wallschläger D and Xiao Z (1999). International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmos Environ 33: 3063–3073 CrossRefGoogle Scholar
  8. 8.
    Munthe J, Wängberg I, Pirrone N, Iverfeldt Å, Ferrara R, Costa P, Ebinghaus R, Feng X, Gårdfelt K, Keeler G, Lanzillotta E, Lindberg SE, Lu J, Mamane Y, Nucaro E, Prestbo E, Schmolke S, Schroeder WH, Sommar J, Sprovieri F, Stevens RK, Stratton W, Tuncel G and Urba A (2001). Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmos Environ 35: 3007–3017 CrossRefGoogle Scholar
  9. 9.
    Lu JY, Schroeder WH, Berg T, Munthe J, Schneeberger D and Schaedlich FA (1998). Device for Sampling and Determination of Total Particulate Mercury in Ambient Air. Anal Chem 70: 2403–2408 CrossRefGoogle Scholar
  10. 10.
    Wängberg I, Munthe J, Pirrone N, Iverfeldt Å, Bahlman E, Costa P, Ebinghaus R, Feng X, Ferrara R, Gårdfeldt K, Kock H, Lanzillotta E, Mamane Y, Mas F, Melamed E, Nucaro E, Osnat Y, Prestbo E, Sommar J, Spain G, Sprovieri F and Tuncel G (2001). Atmospheric mercury distribution in Northern Europe and in the Mediterranean Region. Atmos Environ 35: 3019–3025 CrossRefGoogle Scholar
  11. 11.
    Landis MS, Stevens RK, Schaedlich F and Prestbo EM (2002). Development and characterisation of an annular Denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ Sc Tech 36: 3000–3009 CrossRefGoogle Scholar
  12. 12.
    Wängberg I, Barregard L, Sällsten G, Haeger-Eugensson M, Munthe J and Sommar J (2005). Emissions, dispersion and human exposure of mercury from a Swedish chlor-alkali plant. Atmos Environ 39: 7451–7458 CrossRefGoogle Scholar
  13. 13.
    Sommar J, Wängberg I, Berg T, Gårdfeldt K, Munthe J, Richter A, Urba A, Wittrock F and Schroeder WH (2007). Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Ålesund (79°N), Svalbard, spring 2002. Atmos Chem Phys 7: 151–166 CrossRefGoogle Scholar
  14. 14.
    Berg T, Dye C, Hanssen JE, Krognes T, Munthe J, Reissell A, Schaug J, Schmidbauer N, Semb A, Tørseth K, Uggerud HT, Aas A, Aasarød K, Lisbeth Berntsen L (2002) EMEP manual for sampling and chemical analysis http://www.nilu.no/projects/ccc/manual/index.html
  15. 15.
    Kock HH, Bieber E, Ebinghaus R, Spain TG and Thees B (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmos Environ 39: 7549–7556 CrossRefGoogle Scholar
  16. 16.
    Ogrinc N (2006) Final MERCYMS report. Pirrone Nicola Institute for Atmospheric Pollution of the National Research Council (CNR-IIA) Division of Rende, c/o UNICAL-Polifunzionale, 87036 Rende, ItalyGoogle Scholar
  17. 17.
    Hines ME, Jadran F, Isaac A and Horvat M (2006). Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenija. Appl Geochem 21: 1924–1939 CrossRefGoogle Scholar
  18. 18.
    Andersson M E, Gårdfeldt K, Wängberg I, Sprovieri F, Pirrone N, Lindqvist O (2007) Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea. Marine Chemistry 104: 214–226CrossRefGoogle Scholar
  19. 19.
    Wängberg I, Munthe J, Berg T, Ebinghaus R, Kock HH, Temme C, Bieber E, Spain TG, Stolk A (2007) Trends in air concentration and deposition of mercury in the coastal environment of the North Sea Area. Atmospheric Environment (in press)Google Scholar
  20. 20.
    Sheu G-R and Mason RP (2001). An examination of methods for the measurements of reactive gaseous mercury in the atmosphere environ. Sci Tech 35: 1209–1216 CrossRefGoogle Scholar
  21. 21.
    Sprovieri F, Pirrone N (2007) Spatial ditribution of atmospheric mercury species at off-shore sites of the Mediterranean Sea. EFM (Submitted for publication) (this issue)Google Scholar
  22. 22.
    Mamanne et al. (2006) Final MERCYMS report. Pirrone Nicola Institute for Atmospheric Pollution of the National Research Council (CNR-IIA) Division of Rende, c/o UNICAL-Polifunzionale, 87036 Rende, ItalyGoogle Scholar
  23. 23.
    Munthe J, Wängberg I, Iverfeldt Å, Lindqvist O, Strömberg D, Sommar J, Gårdfeldt K, Petersen G, Ebinghaus R, Prestbo E, Larjava K and Siemens V (2003). Distribution of atmospheric mercury species in Norden Europe: final results from the MOE project. Atmos Environ 37(1): 9–20 CrossRefGoogle Scholar
  24. 24.
    Lindberg SE and Stratton WJ (1998). Atmospheric mercury speciation: concentrations and behaviour of reactive gaseous mercury in ambient air. Environ Sci Technol 32: 49–57 CrossRefGoogle Scholar
  25. 25.
    Garland JA and Derwent RG (1979). Destruction at the ground and the diurnal cycle of concentration of ozone and other gases. Quarterly J Roy Meteorol Soc 105: 169–183 CrossRefGoogle Scholar
  26. 26.
    Landis MS, Lynam MM, Stevens RK (2005) In: Nicola P, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales: atmospheric processes and human exposures around the world, Chapter-7. Springer, ISBN 0-387-24493-XGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ingvar Wängberg
    • 1
  • John Munthe
    • 1
  • David Amouroux
    • 2
  • Maria E. Andersson
    • 3
  • Vesna Fajon
    • 4
  • Romano Ferrara
    • 5
  • Katarina Gårdfeldt
    • 3
  • Milena Horvat
    • 4
  • Yaacov Mamane
    • 6
  • Ety Melamed
    • 6
  • Mathilde Monperrus
    • 2
  • Nives Ogrinc
    • 4
  • Osnat Yossef
    • 6
  • Nicola Pirrone
    • 7
  • Jonas Sommar
    • 3
  • Francesca Sprovieri
    • 7
  1. 1.Environmental Effects & Atmospheric ChemistryIVL, Swedish Environmental Research InstituteGoteborgSweden
  2. 2.Laboratoire Chimie Analytique Bio Inorganique Et Environnement (LCABIE)Université de Pau et des Pays de l’AdourPauFrance
  3. 3.Department of ChemistryGöteborg UniversityGöteborgSweden
  4. 4.Jožef Stefan InstituteLjubljanaSlovenia
  5. 5.Institute of Biophysics of the National Research Council (CNR-IB)PisaItaly
  6. 6.Department of Civil EngineeringIsrael Institute of Technology (TECHNION)HaifaIsrael
  7. 7.Institute for Atmospheric Pollution of the National Research Council (CNR_IIA)RendeItaly

Personalised recommendations