Skip to main content
Log in

An analytical solution of the advection-diffusion equation considering non-local turbulence closure

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Moreover, large eddies are able to mix scalar quantities in a manner that is counter to the local gradient. We present a general solution of a two-dimension steady state advection-diffusion equation, considering non-local turbulence closure using the General Integral Laplace Transform Technique. We show some examples of applications of the new solution with different vertical diffusion parameterisations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves LS, Cotta RM, Pontes J (2002) Stability analysis of natural convection in porous cavities through integral transforms. Int J Heat Mass Transfer 45:1185–1195

    Article  Google Scholar 

  2. Barad ML (1958) Project prairie grass: a field program in diffusion, Geophys. Research Paper No. 59 (II) TR-58-235, Air Force Cambridge Research Centre, USA

  3. Cheroto S, Mikhailov MD, Kakaça S, Cotta RM (1999) Periodic laminar forced convection: solution via symbolic computation and integral transforms. Int J Therm Sci 38:613–621

    Article  CAS  Google Scholar 

  4. Cotta RM (1993) Integral transforms in computational heat and fluid flow. CRC Press, Boca Raton

    Google Scholar 

  5. Cotta R, Mikhaylov M (1997) Heat conduction lumped analysis, integral transforms, symbolic computation. Wiley Baffins Lane, Chinchester, England

  6. Cotta RM, Ungs MJ, Mikhailov MD (2003) Contaminant transport in finite fractured porous medium: integral transforms and lumped-differential formulations. Ann Nucl Energy 30: 261–285

    Article  CAS  Google Scholar 

  7. De Roode SR, Jonker HJJ, Duynkerke PG, Stevens B (2004) Countergradient fluxes of conserved variables in the clear convective and stratocumulus-topped boundary layer: the role of the entrainment flux. Boundary-Layer Met 112:179–196

    Article  Google Scholar 

  8. Deardoff JW (1966) The countergradient heat flux in the lower atmosphere and in the laboratory. J Atmos Sci 23:503–506

    Article  Google Scholar 

  9. Deardoff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115

    Article  Google Scholar 

  10. Deardoff JW, Willis GE (1975) A parameterization of diffusion into the mixed layer. J App Meteorol 14:1451–1458

    Article  Google Scholar 

  11. Degrazia GA, Campos Velho HF, Carvalho JC (1997) Nonlocal exchange coefficients for the convective boundary layer derived from spectral properties. Contrib Atmos Phys 71:57–64

    Google Scholar 

  12. Dyer AJ (1974) A Review of flux-profile relationship. Bound.-Layer Meteorol 7:363–372

    Article  Google Scholar 

  13. Ertel H (1942) Der vertikale turbulenz-wärmestrom in der atmosphäre. Meteorol Z 59:250–253

    Google Scholar 

  14. Fiedler BH, Moeng CH (1985) A practical integral closure model for mean vertical transport of a scalar in a convective boundary layer. J Atmos Sci 42(4):359–363

    Article  Google Scholar 

  15. Gryning SE, Lyck E (1984) Atmospheric dispersion from elevated source in an urban area: comparison between tracer experiments and model calculations. J Climate Appl Meteorol 23:651–654

    Article  Google Scholar 

  16. Hanna SR (1989) Confidence limit for air quality models as estimated by bootstrap and jacknife resampling methods. Atmos Environ 23:1385–1395

    Article  CAS  Google Scholar 

  17. Hamba F (1993) A modified K model for chemically reactive species in the planetary boundary layer. J Geophys Res 98(3):5173–5182

    Article  CAS  Google Scholar 

  18. Holtslag A, Moeng CH (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48:1690–1698

    Article  Google Scholar 

  19. Holtslag A, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Climate 6:1825–1842

    Article  Google Scholar 

  20. Irwin JS (1979) A theoretical variation of the wind profile power-low exponent as a function of surface roughness and stability. Atmos Environ 13:191–194

    Article  Google Scholar 

  21. Magno RN, Macêdo EN, Quaresma JN (2002) Solutions for the internal Boundary Layer equations in simultaneously developing flow as power-law fluids within parallel plates channels. Chem Eng J 87:339–350

    Article  CAS  Google Scholar 

  22. Mangia C, Moreira DM, Schipa I, Degrazia GA, Tirabassi T, Rizza U (2002) Evaluation of a new eddy diffusivity parameterisation from turbulent Eulerian spectra in different stability conditions. Atmos Environ 36:67–76

    Article  CAS  Google Scholar 

  23. Moreira DM, Vilhena MT, Tirabassi T, Buske D, Cotta RM (2005) Near source atmospheric pollutant dispersion using the new GILTT method. Atmos Environ 39(34):6290–6295

    Article  CAS  Google Scholar 

  24. Neto HL, Quaresma JN, Cotta RM (2002) Natural convection in three-dimensional porous cavities: integral transform method. Int J Heat Mass Transfer 45:3013–3032

    Article  Google Scholar 

  25. Nieuwstadt FTM (1980) Application of mixed-layer similarity to the observed dispersion from a ground level source. J Appl Meteorol 19:157–162

    Article  Google Scholar 

  26. Panofsky HA, Dutton JA (1988) Atmospheric turbulence. Wiley, New York

    Google Scholar 

  27. Pereira LM, Guerrero JS, Brazão N, Cotta RM (2002) Compressible flow and heat transfer in ultracentrifuges hybrid analysis via integral transforms. Int J Heat Mass Transfer 45:99–112

    Article  Google Scholar 

  28. Pleim JE, Chang JS (1992) A non-local closure model for vertical mixing in the convective boundary layer. Atmos Environ 26A:965–981

    CAS  Google Scholar 

  29. Priestly CHB, Swinbank WC (1947) Vertical transport of heat by turbulence in the atmosphere. Proc R Soc Lond A189:543–561

    Google Scholar 

  30. Robson RE, Mayocchi CL (1994) A simple model of countergradient flow. Phys Fluids 6(6):1952–1954

    Article  CAS  Google Scholar 

  31. Seinfeld JH, Pandis SN (1997) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  32. van Dop H, Verver G (2001) Countergradient transport revisited. J. Atmos Sci 58:2240–2247

    Article  Google Scholar 

  33. Wortmann S, Vilhena MT, Moreira DM, Buske D (2005) A new analytical approach to simulate the pollutant dispersion in the PBL. Atmos Environ 39:2171–2178

    Article  CAS  Google Scholar 

  34. Wyngaard JC, Brost RA (1984) Top-down botton-up diffusion of a scalar in the convective boundary layer. J Atmos Sci 41:102–112

    Article  Google Scholar 

  35. Wyngaard JC, Weil JC (1991) Transport asymmetry in skewed turbulence. Phys Fluids A3: 155–162

    Google Scholar 

  36. Zilitinkevich S, Gryanik VM, Lykossov VN, Mironov DV (1999) Third-order transport and nonlocal turbulence closures for convective boundary layers. J Atmos Sci 56:3463–3477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tirabassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buske, D., Vilhena, M.T., Moreira, D.M. et al. An analytical solution of the advection-diffusion equation considering non-local turbulence closure. Environ Fluid Mech 7, 43–54 (2007). https://doi.org/10.1007/s10652-006-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-006-9012-5

Keywords

Navigation