Skip to main content
Log in

Validation of ecological state space models using the Laplace approximation

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Many statistical models in ecology follow the state space paradigm. For such models, the important step of model validation rarely receives as much attention as estimation or hypothesis testing, perhaps due to lack of available algorithms and software. Model validation is often based on a naive adaptation of Pearson residuals, i.e. the difference between observations and posterior means, even if this approach is flawed. Here, we consider validation of state space models through one-step prediction errors, and discuss principles and practicalities arising when the model has been fitted with a tool for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations are continuous or discrete. With both simulated data, and a real data set related to geolocation of seals, we demonstrate both the potential and the limitations of the techniques. Our results fill a need for convenient methods for validating a state space model, or alternatively, rejecting it while indicating useful directions in which the model could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. TMB is an R package (R Core Team 2015) available both at the Comprehensive R Archive Network (cran.r-project.org) and in a development version at GitHub (github.com/kaskr/adcomp).

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC–19:716–723 (system identification and time-series analysis)

    Article  Google Scholar 

  • Albertsen CM, Whoriskey K, Yurkowski D, Nielsen A, Mills Flemming J (2015) Fast fitting of non-Gaussian state-space models to animal movement data via template model builder. Ecology 96(10):2598–2604

    Article  PubMed  Google Scholar 

  • Anscombe FJ, Tukey JW (1963) The examination and analysis of residuals. Technometrics 5(2):141–160. doi:10.1080/00401706.1963.10490071

    Article  Google Scholar 

  • Berg CW, Nielsen A (2016) Accounting for correlated observations in an age-based state-space stock assessment model. ICES J Mar Sci. doi:10.1093/icesjms/fsw046

  • Bolker BM, Gardner B, Maunder M, Berg CW, Brooks M, Comita L, Crone E, Cubaynes S, Davies T, Valpine P et al (2013) Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS. Methods Ecol Evol 4(6):501–512

    Article  Google Scholar 

  • Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control, 1976. ISBN: 0-8162-1104-3

  • Cadigan N, Morgan M, Brattey J (2014) Improved estimation and forecasts of stock maturities using generalised linear mixed models with auto-correlated random effects. Fish Manag Ecol 21(5):343–356

    Article  Google Scholar 

  • Clark C, Mangel M (2000) Dynamic state variable models in ecology: methods and applications. Oxford University Press, Oxford

    Google Scholar 

  • Clark JS (2007) Models for ecological data: an introduction, vol 11. Princeton University Press, Princeton

    Google Scholar 

  • Cox D, Hinkley D (1974) Theoretical statistics. Chapman & Hall, London

    Book  Google Scholar 

  • Cox DR, Snell EJ (1968) A general definition of residuals. J R Stat Soc Ser B (Methodol) 30(2):248–275, URL http://www.jstor.org/stable/2984505

  • Dawid AP (1984) Present position and potential developments: Some personal views: Statistical theory: the prequential approach. J R Stat Soc Ser A (General) 147(2):278–292

    Article  Google Scholar 

  • de Valpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecol Monogr 72(1):57–76

    Article  Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5(3):236–244

    Google Scholar 

  • Evensen G (2003) The ensemble kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27(2):233–249

    Article  Google Scholar 

  • Frühwirth-Schnatter S (1996) Recursive residuals and model diagnostics for normal and non-normal state space models. Environ Ecol Stat 3(4):291–309

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data analysis, vol 2. Taylor & Francis, Abingdon

    Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Interdisciplinary statistics. Chapman and Hall, London

    Google Scholar 

  • Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, New Delhi

    Book  Google Scholar 

  • Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge

    Google Scholar 

  • Jonsen I, Flemming J, Myers R (2005) Robust state-space modeling of animal movement data. Ecology 86(11):2874–2880

    Article  Google Scholar 

  • Jonsen I, Basson M, Bestley S, Bravington M, Patterson T, Pedersen MW, Thomson R, Thygesen UH, Wotherspoon S (2013) State-space models for bio-loggers: a methodological road map. Deep Sea Res Part II Top Stud Ocean 88:34–46

    Article  Google Scholar 

  • Kalliovirta L (2012) Misspecification tests based on quantile residuals. Econom J 15(2):358–393. doi:10.1111/j.1368-423X.2011.00364.x

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35–45

    Article  Google Scholar 

  • Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM (2016) TMB: automatic differentiation and Laplace approximation. J Stat Softw 70(5):1–21. doi:10.18637/jss.v070.i05

    Article  Google Scholar 

  • Liu JS, Chen R (1998) Sequential monte carlo methods for dynamic systems. J Am Stat Assoc 93:1032–1044

    Article  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297. doi:10.1093/biomet/65.2.297

    Article  Google Scholar 

  • Ljung L (1999) System Identification—Theory for the User. Information and system sciences series, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Madsen H (2007) Time series analysis. Chapman & Hall/CRC, London

    Google Scholar 

  • May RM (1974) Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186(4164):645–647

    Article  CAS  PubMed  Google Scholar 

  • Murray J (1989) Mathematical Biology. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Nielsen A, Berg CW (2014) Estimation of time-varying selectivity in stock assessments using state-space models. Fish Res 158:96–101

    Article  Google Scholar 

  • Øksendal B (2010) Stochastic differential equations—An Introduction with Applications, 6th edn. Springer-Verlag, Berlin

    Google Scholar 

  • Patterson T, Thomas L, Wilcox C, Ovaskainen O, Mathhiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94

    Article  PubMed  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in s: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Pedersen MW, Berg CW (2016) A stochastic surplus production model in continuous time. Fish Fish 18:226–243

    Article  Google Scholar 

  • Pedersen MW, Berg CW, Thygesen UH, Nielsen A, Madsen H (2011) Estimation methods for nonlinear state-space models in ecology. Ecol Model 222(8):1394–1400

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/

  • Rall LB (1980) Applications of software for automatic differentiation in numerical computation. In: Alefeld G, Grigorieff RD (eds) Fundamentals of numerical computation (computer-oriented numerical analysis), Springer, pp 141–156

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate bayesian inference for latent Gaussian models by using integrated nested laplace approximations. J R Stat Soc Ser B (Stat Methodol) 71(2):319–392

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591. doi:10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  • Skaug HJ, Fournier DA (2006) Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Comput Stat Data Anal 51(2):699–709

    Article  Google Scholar 

  • Smith J (1985) Diagnostic checks of non-standard time series models. J Forecast 4(3):283–291

    Article  Google Scholar 

  • Thygesen UH, Sommmer L, Evans K, Patterson TA (2016) Dynamic optimal foraging theory explains vertical migrations of bigeye tuna. Ecol Appear 97:1852–1861

    Article  Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393):82–86

    Article  Google Scholar 

  • Waagepetersen R (2006) A simulation-based goodness-of-fit test for random effects in generalized linear mixed models. Scand J Stat 33(4):721–731

    Article  Google Scholar 

  • Wan EA, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000, IEEE, pp 153–158

  • Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70:129–133

    Article  Google Scholar 

  • Zucchini W, MacDonald IL (2009) Hidden Markov models for time series: an introduction using R. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe Høgsbro Thygesen.

Additional information

Handling Editor: Pierre Dutilleul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. Validation of ecological state space models using the Laplace approximation. Environ Ecol Stat 24, 317–339 (2017). https://doi.org/10.1007/s10651-017-0372-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-017-0372-4

Keywords

Navigation