Bayesian hierarchical models for analysing spatial point-based data at a grid level: a comparison of approaches

Abstract

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aitkin M (2010) Statistical inference: an integrated Bayesian/likelihood approach. Chapman & Hall/CRC, London

    Google Scholar 

  2. Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42

    Google Scholar 

  3. Baddeley A, Turner R, Møller J, Hazelton M (2005) Residual analysis for spatial point processes (with discussion). J R Stat Soc Series B Stat Methodol 67(5):617–666

    Article  Google Scholar 

  4. Baddeley A, Berman M, Fisher NI, Hardegen A, Milne RK, Schuhmacher D, Shah R, Turner R (2010) Spatial logistic regression and change-of-support in Poisson point processes. Electron J Stat 4:1151–1201

    Article  Google Scholar 

  5. Baddeley AJ, Møller J, Waagepetersen RP (2000) Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54(3):329–350

    Article  Google Scholar 

  6. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data, vol 101. Chapman & Hall, London

    Google Scholar 

  7. Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc Ser B Stat Methodol 70(4):825–848

    Article  Google Scholar 

  8. Beneš V, Bodlák K, Møller J, Waagepetersen RP (2005) A case study on point process modelling in disease mapping. Image Anal Stereol 24:159–168

    Article  Google Scholar 

  9. Berman M, Diggle PJ (1989) Estimating weighted integrals of the second-order intensity of a spatial point process. J R Stat Soc Ser B Methodol 51(1):81–92

    Google Scholar 

  10. Besag J, Higdon D (1999) Bayesian analysis of agricultural field experiments. J R Stat Soc Ser B Stat Methodol 61(4):691–746

    Article  Google Scholar 

  11. Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–20

    Article  Google Scholar 

  12. Best N, Richardson S, Thomson A (2005) A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res 14(1):35–59

    Article  PubMed  Google Scholar 

  13. Best NG, Ickstadt K, Wolpert RL (2000a) Spatial Poisson regression for health and exposure data measured at disparate resolutions. J Am Stat Assoc 95(452):1076–1088

    Article  Google Scholar 

  14. Best NG, Ickstadt K, Wolpert RL, Briggs DJ (2000b) Combining models of health and exposure data: the SAVIAH study. In: Elliot P, Wakefield JC, Best NG, Briggs DJ (eds) Spatial epidemiology: methods and applications. Oxford University Press, Oxford, pp 393–414

    Google Scholar 

  15. Biggeri A, Dreassi E, Catelan D, Rinaldi L, Lagazio C, Cringoli G (2006) Disease mapping in veterinary epidemiology: a Bayesian geostatistical approach. Stat Methods Med Res 15(4):337–352

    Article  PubMed  Google Scholar 

  16. Brezger A, Lang S (2006) Generalized structured additive regression based on Bayesian P-splines. Comput Stat Data Anal 50(4):967–991

    Article  Google Scholar 

  17. Brix A (1999) Generalized gamma measures and shot-noise Cox processes. Adv Appl Probab 31(4):929–953

    Article  Google Scholar 

  18. Celeux G, Forbes F, Robert CP, Titterington DM (2006) Deviance information criteria for missing data models. Bayesian Anal 1(4):651–673

    Article  Google Scholar 

  19. Chang K (2010) Introduction to geographic information systems. McGraw-Hill, New York

    Google Scholar 

  20. Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. Am Stat 49(4):327–335

    Google Scholar 

  21. Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B Methodol 34(2):187–220

    Google Scholar 

  22. Diggle PJ (1985) A kernel method for smoothing point process data. Appl Stat 34(2):138–147

    Article  Google Scholar 

  23. Diggle PJ (1990) A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. J R Stat Soc Ser A Stat Soc 153:349–362

    Article  Google Scholar 

  24. Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London

    Google Scholar 

  25. Diggle PJ, Rowlingson BS (1994) A conditional approach to point process modelling of elevated risk. J R Stat Soc Ser A Stat Soc 157(3):433–440

    Article  Google Scholar 

  26. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc Ser C Appl Stat 47(3):299–350

    Article  Google Scholar 

  27. Diggle PJ, Gómez-Rubio V, Brown PE, Chetwynd AG, Gooding S (2007) Second-order analysis of inhomogeneous spatial point processes using case-control data. Biometrics 63(2):550–557

    Article  CAS  PubMed  Google Scholar 

  28. Diggle PJ, Menezes R, Su T (2010) Geostatistical inference under preferential sampling. J R Stat Soc Ser C Appl Stat 59(2):191–232

    Article  Google Scholar 

  29. Fahrmeir L, Lang S (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. J R Stat Soc Ser C Appl Stat 50(2):201–220

    Article  Google Scholar 

  30. French JL, Wand MP (2004) Generalized additive models for cancer mapping with incomplete covariates. Biostatistics 5(2):177–191

    Article  PubMed  Google Scholar 

  31. Ghosh S, Das S (2010) Spatial point process analysis of Maoist insurgency in India. Technical report, Statistical and Applied Mathematical Sciences Institute

  32. Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41(2):337–348

    Article  Google Scholar 

  33. Gilks WR, Best NG, Tan KKC (1995) Adaptive rejection Metropolis sampling within Gibbs sampling. Appl Stat 44(4):455–472

    Article  Google Scholar 

  34. Guan Y (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point processes. J Am Stat Assoc 103(483):1238–1247

    Article  CAS  Google Scholar 

  35. Heikkinen J, Arjas E (1998) Non-parametric Bayesian estimation of a spatial Poisson intensity. Scand J Stat 25(3):435–450

    Article  Google Scholar 

  36. Heron EA, Walsh CD (2008) A continuous latent spatial model for crack initiation in bone cement. J R Stat Soc Ser C Appl Stat 57(1):25–42

    Article  Google Scholar 

  37. Heron EA, Walsh CD (2010) Bayesian discrete latent spatial modeling of crack initiation in orthopaedic hip replacement bone cement. J Appl Stat 37(7):1153–1171

    Article  Google Scholar 

  38. Ho LP, Stoyan D (2008) Modelling marked point patterns by intensity-marked Cox processes. Stat Probab Lett 78(10):1194–1199

    Article  Google Scholar 

  39. Hossain MM, Lawson AB (2009) Approximate methods in Bayesian point process spatial models. Comput Stat Data Anal 53(8):2831–2842

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ickstadt K, Wolpert RL (1997) Multiresolution assessment of forest inhomogeneity. In: Gatsonis C, Hodges JS, Kass RE, McCulloch R, Rossi P, Singpurwalla ND (eds) Case studies in Bayesian statistics, Lecture notes in statistics no. 121, vol 3. Springer, New York, pp 371–386

  41. Ickstadt K, Wolpert RL (1999) Spatial regression for marked point processes. Bayesian Stat 6:323–341

    Google Scholar 

  42. Ickstadt K, Wolpert R, Lu X (1998) Modeling travel demand in Portland, Oregon. In: Dey D, Müller P, Sinha D (eds) Practical nonparametric and semiparametric Bayesian statistics. Springer, New York, pp 305–322

    Google Scholar 

  43. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Statistics in practice. Wiley, New York

    Google Scholar 

  44. Illian JB, Sørbye SH, Rue H (2012a) A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann Appl Stat 6(4):1499–1530

    Article  Google Scholar 

  45. Illian JB, Sørbye SH, Rue H, Hendrichsen DK (2012b) Using INLA to fit a complex point process model with temporally varying effects: a case study. J Environ Stat 3(7):1–29

    Google Scholar 

  46. Kang SY, McGree J, Mengersen K (2013) The impact of spatial scales and spatial smoothing on the outcome of Bayesian spatial model. PLoS ONE 8(10):e75,957. doi10.1371/journal.pone.0075957

  47. Kleinschmidt I, Pettifor A, Morris N, MacPhail C, Rees H (2007) Geographic distribution of human immunodeficiency virus in South Africa. Am J Trop Med Hyg 77(6):1163–1169

    PubMed Central  PubMed  Google Scholar 

  48. Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 19(1718):2555–2567

    Article  CAS  PubMed  Google Scholar 

  49. Lai PC, So FM, Chan KW (2009) Spatial epidemiological approaches in disease mapping and analysis. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  50. Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    Article  Google Scholar 

  51. Lang S, Fronk EM, Fahrmeir L (2002) Function estimation with locally adaptive dynamic models. Comput Stat 17(4):479–500

    Article  Google Scholar 

  52. Lawson AB, Denison DGT (2002) Spatial cluster modelling. Chapman & Hall, CRC, Boca Raton

    Google Scholar 

  53. Li Y, Brown P, Rue H, al Maini M, Fortin P, (2012) Spatial modelling of lupus incidence over 40 years with changes in census areas. J R Stat Soc Ser C Appl Stat 61(1):99–115

  54. Liang S, Banerjee S, Bushhouse S, Finley AO, Carlin BP (2008a) Hierarchical multiresolution approaches for dense point-level breast cancer treatment data. Comput Stat Data Anal 52(5):2650–2668

    Article  PubMed Central  PubMed  Google Scholar 

  55. Liang S, Carlin BP, Gelfand AE (2008b) Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information. Ann Appl Stat 3(3):943

    Article  PubMed Central  PubMed  Google Scholar 

  56. Møller J (2003a) A comparison of spatial point process models in epidemiological applications. In: Green PJ, Hjort NL, Richardson S (eds) Highly structured stochastic systems. Oxford University Press, Oxford, pp 264–268

    Google Scholar 

  57. Møller J (2003b) Shot noise Cox processes. Adv Appl Probab 35(3):614–640

    Article  Google Scholar 

  58. Møller J, Waagepetersen RP (2002) Statistical inference for Cox processes. In: Lawson AB, Denison DGT (eds) Spatial cluster modeling. Chapman and Hall/CRC, Boca Raton, pp 37–60

    Google Scholar 

  59. Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point processes, vol 100. Champman and Hall/CRC Press, Boca Raton

    Google Scholar 

  60. Møller J, Waagepetersen RP (2007) Modern statistics for spatial point processes*. Scand J Stat 34(4):643–684

    Google Scholar 

  61. Møller J, Syversveen AN, Waagepetersen RP (1998) Log Gaussian Cox processes. Scand J Stat 25(3):451–482

    Article  Google Scholar 

  62. Myllymäki M, Penttinen A (2009) Conditionally heteroscedastic intensity-dependent marking of log Gaussian Cox processes. Stat Neerl 63(4):450–473

    Article  Google Scholar 

  63. Nychka DW (2000) Spatial process estimates as smoothers. In: Schimek MG (ed) Smoothing and regression: approaches, computation and application. Wiley, New York, pp 393–424

    Google Scholar 

  64. Pati D, Reich BJ, Dunson DB (2011) Bayesian geostatistical modelling with informative sampling locations. Biometrika 98(1):35–48

    Article  PubMed Central  PubMed  Google Scholar 

  65. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R: the sp package. R News 5(2):9–13

    Google Scholar 

  66. Perry GLW (2004) SpPack: spatial point pattern analysis in excel using visual basic for applications (VBA). Environ Model Softw 19(6):559–569

    Article  Google Scholar 

  67. Plummer M (2008) Penalized loss functions for Bayesian model comparison. Biostatistics 9(3):523–539

    Article  PubMed  Google Scholar 

  68. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7–11

    Google Scholar 

  69. Richardson S (2003) Spatial models in epidemiological applications. In: Green PJ, Hjort NL, Richardson S (eds) Highly structured stochastic systems. Oxford University Press, Oxford, pp 237–259

    Google Scholar 

  70. Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  Google Scholar 

  71. Robinson WS (1950) Ecological correlations and the behavior of individuals. Am Sociol Rev 15(3):351–357

    Article  Google Scholar 

  72. Rowlingson BS, Diggle PJ (1993) Splancs: spatial point pattern analysis code in S-Plus. Comput Geosci 19(5):627–655

    Article  Google Scholar 

  73. Rue H, Held L (2005) Gaussian Markov random fields: theory and applications, monographs on statistics and applied probability, vol 104. Chapman & Hall, London

    Google Scholar 

  74. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol 71(2):319–392

    Article  Google Scholar 

  75. Sauleau EA, Musio M, Etienne A, Buemi A (2007) Comparison of three convolution prior spatial models for cancer incidence. In: Auget JL, Balakrishnan N, Mesbah M, Molenberghs G (eds) Advances in statistical methods for the health sciences, statistics for industry and technology. Birkhuser, Boston, pp 451–466

    Google Scholar 

  76. Selvin HC (1958) Durkheim’s suicide and problems of empirical research. Am J Sociol 63(6):607–619

    Article  Google Scholar 

  77. Simpson D, Lindgren F, Rue H (2011) Fast approximate inference with INLA: the past, the present and the future. Arxiv preprint arXiv:11052982

  78. Spiegelhalter DJ, Best N, Carlin BP, Van Der Linde A (1998) Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models. Technical report, Research Report, pp 98–009

  79. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64(4):583–639

    Article  Google Scholar 

  80. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2014) The deviance information criterion: 12 years on. J R Stat Soc Ser B Stat Methodol 76(3):485–493

    Article  Google Scholar 

  81. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Chapter 2, Springer, New York

  82. Strickland CM, Denham RJ, Alston CL, Mengersen KL (2012) A Python package for Bayesian estimation using Markov chain Monte Carlo. In: Alston CL, Mengersen KL, Pettitt AN (eds) Case studies in Bayesian statistical modelling and analysis, pp 421–460

  83. Terzopoulos D (1988) The computation of visible-surface representations. IEEE Trans Pattern Anal Mach Intell 10(4):417–438

    Article  Google Scholar 

  84. Vanhatalo J, Vehtari A (2007) Sparse log Gaussian processes via MCMC for spatial epidemiology. JMLR workshop and conference proceedings, vol 1, pp 73–89

  85. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  86. Waagepetersen R, Guan Y (2009) Two-step estimation for inhomogeneous spatial point processes. J R Stat Soc Ser B Stat Methodol 71(3):685–702

    Article  Google Scholar 

  87. Waagepetersen RP (2007) An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63(1):252–258

    Article  PubMed  Google Scholar 

  88. Wolpert RL, Ickstadt K (1998) Poisson/gamma random field models for spatial statistics. Biometrika 85(2):251–267

    Article  Google Scholar 

  89. Woodard DB, Wolpert RL, O’Connell MA (2010) Spatial inference of nitrate concentrations in groundwater. J Agric Biol Environ Stat 15(2):209–227

    Article  Google Scholar 

  90. Yue Y, Loh JM (2011) Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes. Biometrics 67(3):937–946. doi:10.1111/j.1541-0420.2010.01531.x

    Article  PubMed  Google Scholar 

  91. Yue Y, Speckman PL (2010) Nonstationary spatial Gaussian Markov random fields. J Comput Graphical Stat 19(1):96–116

    Article  Google Scholar 

  92. Yue Y, Loh JM, Lindquist MA (2010) Adaptive spatial smoothing of fMRI images. Stat Interface 3:3–13

    Article  Google Scholar 

  93. Yue Y, Lindquist MA, Loh JM (2012a) Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression. Ann Appl Stat 6(2):697–718

    Article  Google Scholar 

  94. Yue Y, Speckman PL, Sun D (2012b) Priors for Bayesian adaptive spline smoothing. Ann Inst Stat Math 64:577–613

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Cooperative Research Centre for Spatial Information, whose activities are funded by the Australian Commonwealth’s Cooperative Research Centres Programme. Computational (and/or data visualization) resources and services used in part of this work were provided by the HPC and Research Support Unit, Queensland University of Technology, Brisbane, Australia. The authors would like to thank the reviewers and Adrian Baddeley for helpful suggestions and comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Su Yun Kang.

Additional information

Handling Editor: Bryan F. J. Manly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 35007 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, S.Y., McGree, J. & Mengersen, K. Bayesian hierarchical models for analysing spatial point-based data at a grid level: a comparison of approaches. Environ Ecol Stat 22, 297–327 (2015). https://doi.org/10.1007/s10651-014-0299-y

Download citation

Keywords

  • Gamma moving average model
  • Grid-based spatial data
  • Integrated nested Laplace approximation
  • Log Gaussian Cox process
  • Markov chain Monte Carlo
  • Semiparametric adaptive Gaussian Markov random field model