Hierarchical modeling of abundance in closed population capture–recapture models under heterogeneity

Abstract

Hierarchical modeling of abundance in space or time using closed-population mark-recapture under heterogeneity (model \(\hbox {M}_{\text {h}}\)) presents two challenges: (i) finding a flexible likelihood in which abundance appears as an explicit parameter and (ii) fitting the hierarchical model for abundance. The first challenge arises because abundance not only indexes the population size, it also determines the dimension of the capture probabilities in heterogeneity models. A common approach is to use data augmentation to include these capture probabilities directly into the likelihood and fit the model using Bayesian inference via Markov chain Monte Carlo (MCMC). Two such examples of this approach are (i) explicit trans-dimensional MCMC, and (ii) superpopulation data augmentation. The superpopulation approach has the advantage of simple specification that is easily implemented in BUGS and related software. However, it reparameterizes the model so that abundance is no longer included, except as a derived quantity. This is a drawback when hierarchical models for abundance, or related parameters, are desired. Here, we analytically compare the two approaches and show that they are more closely related than might appear superficially. We exploit this relationship to specify the model in a way that allows us to include abundance as a parameter and that facilitates hierarchical modeling using readily available software such as BUGS. We use this approach to model trends in grizzly bear abundance in Yellowstone National Park from 1986 to 1998.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agresti A (1994) Simple capture-recapture models permitting unequal catchability and variable sampling effort. Biometrics 50:494–500

    CAS  PubMed  Article  Google Scholar 

  2. Bailey LL, Converse SJ, Kendall WL (2010) Bias, precision, and parameter redundancy in complex multistate models with unobservable states. Ecology 91(6):1598–1604

    PubMed  Article  Google Scholar 

  3. Bartolucci F, Forcina A (2001) Analysis of capture–recapture data with a Rasch-type model allowing for conditional dependence and multidimensionality. Biometrics 57(3):714–719

    CAS  PubMed  Article  Google Scholar 

  4. Bartolucci F, Forcina A (2006) A class of latent marginal models for capture–recapture data with continuous covariates. J Am Stat Assoc 101(474):786–794

    CAS  Article  Google Scholar 

  5. Bartolucci F, Mira A, Scaccia L (2003) Answering two biological questions with a latent class model via MCMC applied to capture-recapture data. Appl Bayesian Stat Stud Biol Med 7

  6. Boyce MS, MacKenzie DI, Manly BFJ, Haroldson MA, Moody D (2001) Negative binomial models for abundance estimation of multiple closed populations. J Wildl Manag 65:498–509

    Article  Google Scholar 

  7. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    Google Scholar 

  8. Burnham KP, Overton WS (1978) Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65:625–633

    Article  Google Scholar 

  9. Carlin B, Chib S (1995) Bayesian model choice via Markov chain Monte Carlo methods. J Royal Stat Soc Series B 57(3):473–484

    Google Scholar 

  10. Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90(432):1313–1321

    Article  Google Scholar 

  11. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc B 39:1–38

    Google Scholar 

  12. Durban JW, Elston DA (2005) Mark-recapture with occasion and individual effects: abundance estimation through Bayesian model selection in a fixed dimensional parameter spaces. J Agric Biol Environ Stat 10:291–305

    Article  Google Scholar 

  13. Farcomeni A, Tardella L (2010) Reference Bayesian methods for recapture models with heterogeneity. Test 19(1):187–208

    Article  Google Scholar 

  14. Fienberg S, Johnson M, Junker B (1999) Classical multilevel and Bayesian approaches to population size estimation using multiple lists. J Royal Stat Soc Series A (Stat Soc) 162(3):383–405

    Article  Google Scholar 

  15. Gelman A (2004) Parameterization and Bayesian modeling. J Am Stat Assoc 99(466):537–545

    Article  Google Scholar 

  16. Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  Google Scholar 

  17. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, London

    Google Scholar 

  18. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Patt Anal Mach Intell 6:721–741

    CAS  Article  Google Scholar 

  19. Gimenez O, Choquet R (2010) Individual heterogeneity in studies on marked animals using numerical integration: capture-recapture mixed models. Ecology 91(4):951–957

    CAS  PubMed  Article  Google Scholar 

  20. Godsill SJ (2001) On the relationship between Markov chain Monte Carlo methods for model uncertainty. J Comput Graph Stat 10(2):230–248

    Article  Google Scholar 

  21. Goodman LA (1974) Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61(2):215–231

    Article  Google Scholar 

  22. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732

    Article  Google Scholar 

  23. Hook EB, Albright SG, Cross PK (1980) Use of Bernoulli census and log-linear methods for estimating the prevalence of spina bifida in livebirths and the completeness of vital record reports in New York State. Am J Epidemiol 112(6):750–758

    CAS  PubMed  Google Scholar 

  24. King R, Brooks SP (2008) On the Bayesian estimation of a closed population size in the presence of heterogeneity and model uncertainty. Biometrics 64(3):816–824

    CAS  PubMed  Article  Google Scholar 

  25. Levine RA, Casella G (2001) Implementations of the Monte Carlo EM algorithm. J Comput Graph Stat 10(3):422–439

    Article  Google Scholar 

  26. Link WA, Barker RJ (2010) Bayesian inference with ecological applications. Academic Press, London

    Google Scholar 

  27. Liu JS, Wu YN (1999) Parameter expansion for data augmentation. J Am Stat Assoc 94:1264–1274

    Article  Google Scholar 

  28. Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS: a Bayesian modelling framework—concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  29. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm C (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  30. Madigan D, York J (1997) Bayesian methods for estimation of the size of a closed population. Biometrika 84(1):19–31

    Article  Google Scholar 

  31. Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135

    Google Scholar 

  32. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing, Vienna, Austria.

  33. Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J Wildl Manag 46(3):752–757

    Article  Google Scholar 

  34. Royle JA (2008) Modeling individual effects in the Cormack-Jolly-Seber model: a state-space formulation. Biometrics 64(2):364–370

    PubMed  Article  Google Scholar 

  35. Royle JA, Dorazio RM (2012) Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J Ornithol 152:521–537

    Article  Google Scholar 

  36. Royle JA, Dorazio RM, Link WA (2007) Analysis of multinomial models with unknown index using data augmentation. J Comput Graph Stat 16:67–85

    Article  Google Scholar 

  37. Royle J, Dorazio R (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press, London

    Google Scholar 

  38. Sanathanan L (1972) Estimating the size of a multinomial population. Ann Math Stat 43(1):142–152

    Article  Google Scholar 

  39. Schofield MR, Barker RJ (2011) Full open population capture–recapture models with individual covariates. J Agric Biol Environ Stat 16:253–268

    Article  Google Scholar 

  40. Sisson SA (2005) Transdimensional Markov chains. J Am Stat Assoc 100(471):1077–1089

    CAS  Article  Google Scholar 

  41. Stanghellini E, van der Heijden PGM (2004) A multiple-record systems estimation method that takes observed and unobserved heterogeneity into account. Biometrics 60(2):510–516

    PubMed  Article  Google Scholar 

  42. Tardella L (2002) A new Bayesian method for nonparametric capture-recapture models in presence of heterogeneity. Biometrika 89(4):807–817

    Article  Google Scholar 

Download references

Acknowledgments

M.R.S. was partially funded by NSF Grants Nos. 0934516 and 0814194.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Schofield.

Additional information

Handling Editor: Pierre Dutilleul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 191 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schofield, M.R., Barker, R.J. Hierarchical modeling of abundance in closed population capture–recapture models under heterogeneity. Environ Ecol Stat 21, 435–451 (2014). https://doi.org/10.1007/s10651-013-0262-3

Download citation

Keywords

  • Bayesian
  • Capture recapture
  • Complete data likelihood
  • Data augmentation
  • Hierarchical
  • MCMC
  • Reversible jump
  • Superpopulation
  • Trans-dimensional