Skip to main content


Log in

Spatial analyses of groundwater level differences using geostatistical modeling

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript


The purpose of this study was to determine and evaluate the spatial changes in the depletion of groundwater level differences by using geostatistical methods based on data from 58 groundwater wells during the period from April 1999 to April 2008 in the study area. Geostatistical methods have been used widely as a convenient tool to make decision on the management of groundwater levels. To evaluate the spatial changes in the level of the groundwater, geographic information system is used for the application of universal kriging method with cross-validation leading to the estimation of groundwater levels. The resulting prediction mappings identify the locations of groundwater level fluctuations of the study area. The average range of variogram (spherical model) for the spatial analysis is about 9,200 m. Results of universal kriging for groundwater level differences drops were underestimated by 15 %. Cross-validation errors are within an acceptable level. The maps show that this area of high decrease of groundwater level is located at the southwest. Kriging model helps also to detect sensitively risk prone areas for groundwater withdrawing. Such areas must be protected with an effective management procedure for future groundwater exploitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  • Ahmadi SH, Sedghamiz A (2007) Geostatistical analysis of spatial and temporal variations of groundwater level. Environ Monit Assess 129:277–294

    Article  PubMed  Google Scholar 

  • Basaran M, Erpul G, Ozcan AU, Saygin DS, Kibar M, Bayramin I, Yilman FE (2010) Spatial information of soil hydraulic conductivity and performance of cokriging over kriging in a semi-arid basin scale. Environ Earth Sci. doi:10.1007/s12665-010-0753-6

  • Bugai D, Kashparov V, Dewiere L, Khomutinin Y, Levchuk S, Yoschenko V (2005) Characterization of subsurface geometry and radioactivity distribution in the trench containing Chernobyl clean-up wastes. Environ Geol. 47:869–881

    Article  CAS  Google Scholar 

  • Cameron K, Hunter H (2002) Using spatial models and kriging techniques to optimize long-term ground-water monitoring networks: a case study. Environmetrics 13:629–656

    Article  Google Scholar 

  • Castrignano A, Buondonno A, Odierna P, Fiorentino C, Coppola E (2008) Uncertainty assessment of a soil quality index using geostatistics. Environmetrics. doi:10.1002/env.930

  • Chappell A, Heritage GL, Fuller IC, Large ARG, Mılan DJ (2003) Geostatistical analysis of ground-survey elevation data to elucidate spatial and temporal river channel change. Earth Surf Proc Land 28:349–370

    Article  Google Scholar 

  • Cinnirella S, Buttafuoco G, Pirrone N (2005) Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchment (Italy). Environ Pollut 133–3:569–580

    Article  Google Scholar 

  • Desbarats AJ, Logan CE, Hinton MJ, Sharpe DR (2002) On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol 255:25–38

    Article  Google Scholar 

  • D’Agostino V, Greene A, Passarella G, Vurro M (1998) Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. Environ Geol 36:285–295

    Article  Google Scholar 

  • Diodato N, Ceccarelli M (2005) Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth Surf Process Landf 30:259–268

    Article  Google Scholar 

  • Dong J, Yu M, Bian Z, Wang Y, Di C (2010) Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou. China. Environ Earth Sci. doi:10.1007/s12665-010-0507-5

  • Fischer MM, Scholten HJ, Unwin DJ (1996) Spatial analytical perspectives on GIS. Taylor & Francis Ltd, London

    Google Scholar 

  • Gaus I, Kinniburgh DG, Talbot JC, Webster R (2003) Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging. Environ Geol 44:939–948

    Article  CAS  Google Scholar 

  • Gundogdu KS, Guney I (2007) Spatial analyses of groundwater levels using universal kriging. J Earth Syst Sci 116(1):49–55

    Article  Google Scholar 

  • Hu K, Huang Y, Li H, Li B, Chen D, White R (2005) Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. J Environ Int 31:896–903

    Article  CAS  Google Scholar 

  • Isaaks E, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Knotters M, Bierkens MFP (2001) Predicting water table depths in space and time using a regionalised time series model. Geoderma 103:51–77

    Article  Google Scholar 

  • Kumar V, Remadevi TT (2006) Kriging of groundwater levels—a case study. J Sp Hydrol 6:81–94

    Google Scholar 

  • Iskandar I, Koike K (2010) Distinguishing potential sources of arsenic released to groundwater around a fault zone containing a mine site. Environ Earth Sci. doi:10.1007/s12665-010-0727-8

  • LaMotte AE, Greene EA (2007) Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA. Environ Geol 52:1413–1421

    Article  CAS  Google Scholar 

  • Lee JY, Song SH (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52:1231–1242

    Article  CAS  Google Scholar 

  • Leuangthong O, McLennan JA, Deutsch CV (2004) Minimum acceptance criteria for geostatistical realizations. Nat Resour Res 13:131–141

    Article  Google Scholar 

  • Liao D, Peuquet DJ, Duan Y, Whitsel EA, Dou J, Smith RL, Lin HM, Chen JC, Heiss G (2006) GIS approaches for the estimation of residential-level ambient PM concentrations. Environ Health Perspect 114:1374–1380

    Article  PubMed  CAS  Google Scholar 

  • Liu CW, Jang CS, Chen SC (2002) Three-dimensional spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Environ Geol 43:48–56

    Article  CAS  Google Scholar 

  • Nas B, Berktay A (2006) Groundwater contamination by nitrates in the city of Konya. J Environ Manag 79:30–37

    Article  CAS  Google Scholar 

  • Rakhmatullaev S, Marache A, Huneau F, Coustumer PL, Bakiev M, Le P, Heino MM (2010) Geostatistical approach for the assessment of the water reservoir capacity in arid regions: a case study of the Akdarya reservoir. Uzbekistan. Environ Earth Sci. doi:10.1007/s12665-010-0711-3

  • Shamsudduha M, Marzen LJ, Uddin A, Lee MK, Saunders JA (2009) Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh. Environ Geol 57:1521–1535

    Article  CAS  Google Scholar 

  • Sharda VN, Kurothe RS, Sena DR, Pande VC, Tiwari SP (2006) Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J Hydrol 329:224–243

    Article  Google Scholar 

  • Sunila R, Kollo K (2007) A comparison of geostatistics and fuzzy applications for digital elevation models. Quality aspects in spatial data mining. Wiley, London

    Google Scholar 

  • Ta’any RA, Tahboub AB, Saffarini GA (2009) Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman–Zarqa basin, Jordan: a case study. Environ Geol 57:525–535

    Article  Google Scholar 

  • Theodossiou N, Latinopoulos P (2006) Evaluation and optimization of groundwater observation networks using the kriging methodology. Environ Model Softw 21:991–1000

    Article  Google Scholar 

  • Wameling A (2003) Accuracy of geostatistical prediction of yearly precipitation in Lower Saxony. Environmetrics 14:699–709

    Article  Google Scholar 

  • Wang YQ, Zhang XC, Zhang JL, Li SJ (2009) Spatial variability of soil organic carbon in a watershed on the Loess Plateau. Pedosphere 19(4):486–495

    Article  CAS  Google Scholar 

  • Water Authority (2006) Groundwater Report 2006 Konya. Turkey, Municipality of Konya City (in Turkish)

  • Wu C, Wu J, Luo Y, Zhang H, Teng Y, DeGloria SD (2010) Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation. Environ Earth Sci. doi:10.1007/s12665-010-0784-z

  • Yarus JM, Chambers RL (1994) Stochastic modeling and geostatistics. In: AAPG computer applications in geology, vol 3. The American Association of Petroleum Geologists

  • Yeh MS, Lin YP, Chang LC (2006) Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environ Geol 50:101–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mevlut Uyan.

Additional information

Handling Editor: Ashis SenGupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uyan, M., Cay, T. Spatial analyses of groundwater level differences using geostatistical modeling. Environ Ecol Stat 20, 633–646 (2013).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: