Skip to main content

Delimiting synchronous populations from monitoring data

Abstract

We propose to investigate spatial synchrony in population dynamics from monitoring data. We develop a statistical procedure to delineate populations of sites with synchronous dynamics from short time series. The procedure relies on a new norm, the synchronous total variation norm, which promotes synchrony in the estimation of the sites dynamics. The method is tested on some synthetic data sets and is applied on data from the French breeding bird monitoring program.

This is a preview of subscription content, access via your institution.

References

  1. Bickel P, Ritov Y, Tsybakov A (2009) Simultaneous analysis of lasso and dantzig selector. Ann Stat 37(4): 1705–1732

    Article  Google Scholar 

  2. Candès E, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6): 717–772

    Article  Google Scholar 

  3. Candès E, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5): 2053–2080

    Article  Google Scholar 

  4. Chambolle A, Caselles V, Novaga M, Cremers D, Pock T (2010) An introduction to total variation for image analysis. Radon Ser Comp Appl Math 9: 1–78

    Google Scholar 

  5. Devictor V, Julliard R, Couvet D, Jiguet F (2008) Birds are tracking climate warming, but not fast enough. Proc R Soc B Biol Sci 275: 2743–2748

    Article  Google Scholar 

  6. Grenfell B, BjornstadO Kappey J (2001) Travelling waves and spatial hierarchies in measles epidemics. Nature 414: 716–723

    PubMed  Article  CAS  Google Scholar 

  7. Hassell M (2000) The spatial and temporal dynamics of hostparasitoid interactions. Oxford University Press, Oxford

    Google Scholar 

  8. Heino M, Kaitala V, Ranta E, Lindstrom J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. Proc R Soc Lond Ser B Biol Sci 264: 481–486

    Article  Google Scholar 

  9. Jiguet F, Devictor V, Julliard R, Couvet D (2011) French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecol. doi:10.1016/j.actao.2011.05.003

  10. Liebhold A, Koenig W, Bjornstad O (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35: 467–490

    Article  Google Scholar 

  11. Meinshausen N, Bühlman P (2006) High dimensional graphs and variable selection with the lasso. Ann Stat 34: 1436–1462

    Article  Google Scholar 

  12. Moran P (1953) The statistical analysis of the Canadian lynx cycle. 2. Synchronization and meteorology. Aust J Zool 1: 291–298

    Article  Google Scholar 

  13. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1999) Dispersal and spatial scale affect synchrony in spatial population dynamics. Ecol Lett 2: 114–120

    Article  Google Scholar 

  14. Ranta E, Kaitala V (1997) Travelling waves in vole population dynamics. Nature 390: 456–456

    Article  Google Scholar 

  15. Ranta E, Kaitala V, Lindstrom J, Linden H (1995) Synchrony in population dynamics. Proc R Soc Lond Ser B Biol Sci 262: 113–118

    Article  Google Scholar 

  16. Rudin L, Osher SJ, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60: 259–268

    Article  Google Scholar 

  17. Schmeller DS (2008) European species and habitat monitoring: where are we now?. Biodivers Conserv 17: 3321–3326

    Article  Google Scholar 

  18. Schmeller D, Henry P, Julliard R, Gruber B, Clobert J, Dziock F et al (2009) Advantages of volunteer-based biodiversity monitoring in Europe. Conserv Biol 23: 307–316

    PubMed  Article  Google Scholar 

  19. Sutcliffe OL, Thomas CD, Moss D (1996) Spatial synchrony and asynchrony in butterfly population dynamics. J Anim Ecol 65: 85–95

    Article  Google Scholar 

  20. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1): 267–288

    Google Scholar 

  21. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476): 1418–1429

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christophe Giraud.

Additional information

Handling Editor: Ashis SenGupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giraud, C., Julliard, R. & Porcher, E. Delimiting synchronous populations from monitoring data. Environ Ecol Stat 20, 337–352 (2013). https://doi.org/10.1007/s10651-012-0222-3

Download citation

Keywords

  • Monitoring data
  • Penalized log-likelihood
  • Primal-dual optimization
  • Synchronous population
  • 1-penalty