Advertisement

Environmental and Ecological Statistics

, Volume 19, Issue 3, pp 345–367 | Cite as

A statistical test to detect vortices in the current fields of bodies of water

  • Gilles R. DucharmeEmail author
  • Céline Vincent
  • Catherine Aliaume
Article
  • 89 Downloads

Abstract

Vortices could play an important role in the occurrence of certain biological phenomena, such as the massive proliferation of harmful algae in bodies of water. Many measures exist to detect vortices in fluids, but little is known about the stochastic behavior of these quantities with data that contain statistical noise. Consequently they do not provide control over the probability of false positives and give little information about the risk of false negatives. Obtaining such control requires a statistical testing procedure. In this paper, we develop a test for vortices in random current fields using only the directions of the current observed at points on a regular grid. We construct a change-point test for spatially ordered angular data to detect the presence of a local vortex. A global vortex detection procedure based on this test is developed and applied to a data set from a lagoon located in the south of France. It is shown that this procedure can detect the presence of multiple vortices with good accuracy.

Keywords

Angular data Change-point problem Hot-spot detection Statistical test von Mises distribution Vortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best DJ, Fisher NI (1979) Efficient simulation of the von Mises distribution. Appl Stat 28: 152–157CrossRefGoogle Scholar
  2. Byrne RW, Noser R, Bates LA, Jupp PE (2009) How did they get from here to there? Detecting changes of direction in terrestrial ranging. Anim Behav 77: 619–631CrossRefGoogle Scholar
  3. Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535: 189–214CrossRefGoogle Scholar
  4. d’Ovidio F, Isern-Fontanet J, López C, Hernández -García, García -Ladona (2009) Comparison between the Okubo-Weiss parameter and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep Sea Res 56: 15–31CrossRefGoogle Scholar
  5. Ghosh K, Jammalamadaka SR, Vasudaven M (1999) Change-point problems for the von Mises distribution. J Appl Stat 26: 423–434CrossRefGoogle Scholar
  6. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285: 69–94CrossRefGoogle Scholar
  7. Kürchermann D (1965) Report on the IUTAM symposium on concentrated vortex motion in fluids. J Fluid Mech 21: 1–20CrossRefGoogle Scholar
  8. Lazure P (1992) Etude de la dynamique de l’étang de Thau par modèle numérique tridimensionnel. Vie et Milieu 42: 137–145Google Scholar
  9. Lazure P, Salomon JC (1991) Coupled 2-D and 3-D modeling of coastal hydrodynamics. Oceanol Acta 14: 173–180Google Scholar
  10. Lugt HJ (1979) The dilemma of defining a vortex. In: Müller U, Roesner KG, Schmidt B (eds) Recent developments in theoretical and experimental fluid mechanics. Springer, New York, pp 309–321CrossRefGoogle Scholar
  11. Mardia KV, Jupp PE (2000) Directional statistics. Wiley, New YorkGoogle Scholar
  12. Mardia KV, Hughes G, Taylor CC, Singh H (2008) A multivariate von Mises distribution with applications to bioinformatics. Can J Stat 36: 99–109CrossRefGoogle Scholar
  13. Miller RG (1980) Simultaneous statistical inference. Springer, New YorkGoogle Scholar
  14. Patil GP, Taillie C (2003) Geographic and network surveillance via scan statistics for critical area detection. Stat Sci 18: 457–465CrossRefGoogle Scholar
  15. Pinkse J, Shen L, Slade M (2007) A central limit theorem for endogenous locations and complex spatial interactions. J Econ 140: 215–225Google Scholar
  16. Whitcher B, Lee TCM, Weiss JB, Hoar TJ, Nychka DW (2008) A multi-resolution census algorithm for calculating vortex statistics in turbulent flows. Appl Stat 57: 293–312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gilles R. Ducharme
    • 1
    Email author
  • Céline Vincent
    • 2
  • Catherine Aliaume
    • 2
  1. 1.Équipe de Probabilités et Statistique, UMR 5149Université Montpellier 2Montpellier Cedex 5France
  2. 2.Laboratoire Ecosystèmes Lagunaires, UMR 5119Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations