Skip to main content
Log in

A note on non-parametric and semi-parametric modeling of wildfire hazard in Los Angeles County, California

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

This paper explores the use of, and problems that arise in, kernel smoothing and parametric estimation of the relationships between wildfire incidence and various meteorological variables. Such relationships may be treated as components in separable point process models for wildfire activity. The resulting models can be used for comparative purposes in order to assess the predictive performance of the Burning Index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1977). On entropy maximization principle. In: Krishnaiah, PR (eds) Applications of statistics., pp 27–41. North-Holland, Amsterdam

    Google Scholar 

  • Andrews PL, Bradshaw LS (1997) FIRES: Fire Information Retrieval and Evaluation System - a program for fire danger rating analysis. Gen. Tech. Rep. INT-GTR-367. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, 64 pp

  • Andrews PL, Loftsgaarden DO and Bradshaw LS (2003). Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int J Wildland Fire 12: 213–226

    Article  Google Scholar 

  • Bradshaw LS, Brittain S (1999) FireFamily Pls: fire weather and fire danger climatology at your fingertips. In: 3rd Symposium on Fire and Forest Meteorology, Long Beach, CA. American Meteorological Society, Boston

  • Bradshaw LS, McCormick E (2000) FireFamily Plus User’s Guide, Version 2.0. USDA Forest Service

  • Bradshaw LS, Deeming JE, Burgan RE, Cohen JD (1983) The 1978 National Fire-danger Rating System: technical documentation. United States Department of Agriculture Forest Service General Technical Report INT-169. Intermountain Forest and Range Experiment Station, Ogden, Utah, 46 pp

  • Burgan RE (1988) 1988 revisions to the 1978 National Fire-Danger Rating System. USDA Forest Service, Southeastern Forest Experiment Station, Research Paper SE-273

  • Cressie NA (1993). Statistics for spatial data, revised edn. Wiley, New York

    Google Scholar 

  • Daley D and Vere-Jones D (1988). An introduction to the theory of point processes. Springer, NY

    Google Scholar 

  • Daley D and Vere-Jones D (2003). An introduction to the theory of point processes, vol. I, 2nd edn. Springer, New York

    Google Scholar 

  • Deeming JE, Burgan RE, Cohen JD (1977) The National Fire-Danger Rating System – 1978. Technical Report INT-39, USDA Forest Service, Intermountain Forest and Range Experiment Station

  • Diggle P (1985). A kernel method for smoothing point process data. Appl Stat 34(2): 138–147

    Article  Google Scholar 

  • Haines DA, Main WA, Frost JS and Simard AJ (1983). Fire-danger rating and wildfire occurrence in the Northeastern United States. For Sci 29(4): 679–696

    Google Scholar 

  • Hall P (1987). On Kullback–Leibler loss and density estimation. Ann Stat 15: 1492–1519

    Google Scholar 

  • Härdle W (1991). Smoothing techniques: with implementation in S. Springer, New York

    Google Scholar 

  • Hu H and Liu WT (2003). Oceanic thermal and biological responses to Santa Ana winds. Geophys Res Lett 30(11): 501–504

    Article  Google Scholar 

  • Keeley JE (1982) Distribution of lightning and man-caused wildfires in California. In: Conrad CE, Oechel WC (eds) Proceedings of the symposium on dynamics and management of Mediterranean-type ecosystems. General technical report PSW-58, Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, pp 431–437

  • Keeley JE (2000) Chaparral. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd edn. Cambridge University Press, NY, pp 203–253

    Google Scholar 

  • Keeley J (2002). Fire management of California shrubland landscapes. Environ Manage 29: 395–408

    Article  PubMed  Google Scholar 

  • Keeley JE and Fotheringham CJ (2001). History and management of crown-fire ecosystems: a summary and response. Conserv Biol 15(6): 1536–1548

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ and Morais M (1999). Reexamining fire suppression impacts on brushland fire regimes. Science 284: 1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Mees R and Chase R (1991). Relating burning index to wildfire workload over broad geographic areas. Int J Wildland Fire 1: 235–238

    Article  Google Scholar 

  • Ogata Y (1988). Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83(401): 9–27

    Article  Google Scholar 

  • Ogata Y (1998). Space-time point-process models for earthquake occurrences. Ann Inst Statist Math 50(2): 379–402

    Article  Google Scholar 

  • Ogata Y and Akaike H (1982). On linear intensity models for mixed doubly stochastic poisson and self-exciting point processes. J R Stat Soc B 44(1): 102–107

    Google Scholar 

  • Park BU and Marron JS (1990). Comparison of data-driven bandwidth selectors. J Am Stat Assoc 85: 66–72

    Article  Google Scholar 

  • Park BU and Turlach BA (1992). Practical performance of several data driven bandwidth selectors. Comput Stat 7: 251–270

    Google Scholar 

  • Peng RD, Schoenberg FP and Woods J (2005). A space-time conditional intensity model for evaluating a wildfire hazard index. J Am Stat Assoc 100(469): 26–35

    Article  CAS  Google Scholar 

  • Pyne SJ, Andrews PL and Laven RD (1996). Introduction to wildland fire, 2nd edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • Rathbun SL (1996). Asymptotic properties of the maximum likelihood estimator for spatiotemporal point processes. J Stat Plan Inference 51: 55–74

    Article  Google Scholar 

  • Rothermel RC (1991). Predicting behavior of the 1988 Yellowstone fires: projections versus reality. Int J Wildland Fire 1(1): 1–10

    Article  Google Scholar 

  • Schoenberg FP (2004). Testing separability in multi-dimensional point processes. Biometrics 60: 471–481

    Article  PubMed  Google Scholar 

  • Schoenberg FP (2006) A note on the separability of multidimensional point processes with covariates. UCLA Preprint Series, No. 496

  • Schoenberg FP, Peng R and Woods J (2003). On the distribution of wildfire sizes. Environmetrics 14(6): 583–592

    Article  Google Scholar 

  • Schuster EF, Gregory CG (1981) On the non-consistency of maximum likelihood nonparametric density estimators. In: Eddy W (ed) Computer science and statistics: Proceedings of the 13th Symposium on the interface, Springer Verlag, New York

  • Scott DW (1992). Multivariate density estimation: theory, practice and visualization. Wiley, New York

    Book  Google Scholar 

  • Scott DW and Factor LE (1981). Monte Carlo study of three data based nonparametric density estimators. J Am Stat Assoc 76: 9–15

    Article  Google Scholar 

  • Silverman BW (1986). Density estimation for statistics and data analysis. Chapman and Hall, London

    Google Scholar 

  • Stone M (1974). Cross-validatory choice and assessment of statistical predictions. J R Stat Soc B 36: 111–147

    Google Scholar 

  • Stone C (1984). An asymptotically optimal window selection rule for kernel density estimates. Ann Stat 12: 1285–1297

    Article  Google Scholar 

  • Turner MG and Romme WH (1994). Landscape dynamics in crown fire ecosystems. Landsc Ecol 9(1): 59–77

    Article  Google Scholar 

  • Venables WN and Ripley BD (2002). Modern applied statistics with S. Springer, New York

    Google Scholar 

  • Warren JR, Vance DL (1981) Remote Automatic Weather Station for Resource and Fire Management Agencies. United States Department of Agriculture Forest Service Technical Report INT-116. Intermountain Forest and Range Experiment Station

  • Wilks SS (1962). Mathematical statistics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Paik Schoenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenberg, F.P., Pompa, J. & Chang, CH. A note on non-parametric and semi-parametric modeling of wildfire hazard in Los Angeles County, California. Environ Ecol Stat 16, 251–269 (2009). https://doi.org/10.1007/s10651-007-0087-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-007-0087-z

Keywords

Navigation