Skip to main content
Log in

Dynamic multi-resolution spatial models

  • Original Article
  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Data from remote-sensing platforms play an important role in monitoring environmental processes, such as the distribution of stratospheric ozone. Remote-sense data are typically spatial, temporal, and massive. Existing prediction methods such as kriging are computationally infeasible. The multi-resolution spatial model (MRSM) captures nonstationary spatial dependence and produces fast optimal estimates using a change-of-resolution Kalman filter. However, past data can provide valuable information about the current status of the process being investigated. In this article, we incorporate the temporal dependence into the process by developing a dynamic MRSM. An application of the dynamic MRSM to a month of daily total column ozone data is presented, and on a given day the results of posterior inference are compared to those for the spatial-only MRSM. It is apparent that there are advantages to using the dynamic MRSM in regions where data are missing, such as when a whole swath of satellite data is missing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A (1990) Categorical data analysis. Wiley, New York

    Google Scholar 

  • Berliner LM, Wikle CK, Cressie N (2000) Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J Clim 13:3953–3968

    Article  Google Scholar 

  • Brown PE, Karesen KF, Roberts GO, Tonellato S (2000) Blur-generated nonseparable space–time models. J R Stat Soc Ser B 62:847–860

    Article  Google Scholar 

  • Calder C, Holloman C, Higdon D (2002) Exploring space–time structure in ozone concentration using a dynamic process convolution model. In: Gatsonis C, Kass RE, Carriquiry A, Gelman A, Higdon D, Pauler DK, Verdinelli I (eds) Case studies in Bayesian statistics 6. Springer-Verlag, New York, pp 165–176

    Google Scholar 

  • Cane MA, Kaplan A, Miller RN, Tang B, Hackert EC, Busalacchi AJ (1996) Mapping tropical Pacific sea level: data assimilation via reduced state space Kalman filter. J Geophys Res 101:22599–22617

    Article  Google Scholar 

  • Carroll R, Chen R, George E, Li T, Newton H, Schmiediche H, Wang N (1997) Ozone exposure and population density in Harris county, Texas (with discussion). J Am Stat Assoc 92:392–415

    Article  Google Scholar 

  • Chou KC, Willsky AS, Nikoukhah R (1994) Multiscale systems, Kalman filters, and Riccati equations. IEEE Trans Autom Control. 39:479–492

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data (revised edition). Wiley, New York

    Google Scholar 

  • Cressie N (1994) Comment on “An approach to statistical spatial-temporal modeling of meteorological fields” by M.S. Handcock and J.R. Wallis. J Am Stat Assoc 89:379–382

    Article  Google Scholar 

  • Cressie N (2002) Variogram estimation. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 4. Wiley, New York, pp 2316–2321

    Google Scholar 

  • Cressie N, Huang H-C (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340

    Article  Google Scholar 

  • Cressie N, Wikle CK (2002) Space–time Kalman filter. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol. 4. Wiley, New York, pp 2045–2049

    Google Scholar 

  • de Iaco S, Myers DE, Posa D (2001) Space–time analysis using a general product-sum model. Stat Probab Lett 52:21–28

    Article  Google Scholar 

  • Gelfand AE, Ghosh S, Knight J, Sirmans C (1998) Spatio-temporal modeling of residual sales data. J Bus Econ Stat 16:312–321

    Article  Google Scholar 

  • Gelpke V, Künsch HR (2001) Estimation of motion from sequences of images. In: Moore M (ed) Spatial statistics: methodological aspects and applications. Springer lecture notes in statistics, vol 159. Springer-Verlag, New York, pp 141–167

    Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space–time data. J Am Stat Assoc 97:590–600

    Article  Google Scholar 

  • Guttorp P, Sampson PD, Newman K (1992) Nonparametric estimation of spatial covariance with application to monitoring network evaluation. In: Walden A, Guttorp P (eds) Statistics in environmental and earth sciences. Edward Arnold, London, pp 39–51

    Google Scholar 

  • Handcock MS, Wallis JR (1994) An approach to statistical spatial-temporal modeling of meteorological fields. J Am Stat Assoc 89:368–378

    Article  Google Scholar 

  • Hartfield MI, Gunst RF (2003) Identification of model components for a class of continuous spatiotemporal models. J Agric Biol Environ Stat 8:105–121

    Article  Google Scholar 

  • Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer-Verlag, New York

    Google Scholar 

  • Haslett J, Raftery AE (1989) Space–time modeling with long-memory dependence: assessing ireland’s wind power resource. Appl Stat 38:1–21

    Article  Google Scholar 

  • Huang H-C (1997) Spatial modeling using graphical Markov models and wavelets. Ph.D. thesis, Department of Statistics, Iowa State University

  • Huang H-C, Cressie N (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput Stat Data Anal 22:159–175

    Article  Google Scholar 

  • Huang H-C, Cressie N (2001) Multiscale graphical modeling in space: applications to command and control. In: Moore M (ed) Spatial statistics: methodological aspects and some applications. Springer lecture notes in statistics, vol 159. Springer-Verlag, New York, pp 83–113

    Google Scholar 

  • Huang H-C, Hsu N-J (2004) Modeling transport effects on ground-level ozone using a non-stationary space–time model. Environmetrics 15:251–268

    Article  CAS  Google Scholar 

  • Huang H-C, Cressie N, Gabrosek J (2002) Fast, resolution-consistent spatial prediction of global processes from satellite data. J Comput Graph Stat 11:63–88

    Article  Google Scholar 

  • Huerta G, Sanso B, Stroud JR (2004) A spatio-temporal model for Mexico City ozone levels. Appl Stat 53:231–248

    Google Scholar 

  • Johannesson G (2003) Multi-resolution statistical modeling in space and time with application to remote sensing of the environment. Ph.D. thesis, Department of Statistics, The Ohio State University

  • Johannesson G, Cressie N (2004) Variance-covariance modeling and estimation for multi-resolution spatial models. In: Sanchez-Vila X, Carrera J, Gómez-Hernández J (eds) geoENV IV - geostatistics for environmental applications. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 319–330

    Chapter  Google Scholar 

  • Jones RH, Zhang Y (1997) Models for continuous stationary space-time processes. In: Gregoire TG et al. (eds) Modelling longitudinal and spatially correlated data. Springer lecture notes in statistics, vol 122. Springer-Verlag, New York, pp 289–298

    Google Scholar 

  • Kolaczyk ED, Huang H (2001) Multiscale statistical models for hierarchical spatial aggregation. Geogr Anal 33:95–118

    Article  Google Scholar 

  • Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31:651–684

    Article  Google Scholar 

  • Mardia K, Goodall C, Redfern E, Alonso F (1998) The kriged Kalman filter (with discussion). Test 7:217–285

    Article  Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New York

    Google Scholar 

  • Meiring W, Guttorp P, Sampson PD (1998) Space–time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environ Ecol Stat 5:197–222

    Article  Google Scholar 

  • Stein M (2005) Space–time covariance functions. J Am Stat Assoc 100:310–321

    Article  CAS  Google Scholar 

  • Stroud JR, Müller P, Sansó, B (2001) Dynamic models for spatiotemporal data. J R Stat Soc Ser B 63:673–689

    Article  Google Scholar 

  • Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Google Scholar 

  • Waller L, Carlin B, Xia H, Gelfand A (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617

    Article  Google Scholar 

  • Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86:815–829

    Article  Google Scholar 

  • Wikle CK, Berliner M, Cressie N (1998) Hierarchical Bayesian space–time models. Environ Ecol Stat 5:117–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gardar Johannesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesson, G., Cressie, N. & Huang, HC. Dynamic multi-resolution spatial models. Environ Ecol Stat 14, 5–25 (2007). https://doi.org/10.1007/s10651-006-0005-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-006-0005-9

Keywords

Navigation