Modelling Replicated Weed Growth Data using Spatially-varying Growth Curves

Abstract

Weed growth in agricultural fields constitutes a major deterrent to the growth of crops, often resulting in low productivity and huge losses for the farmers. Therefore, proper understanding of patterns in weed growth is vital to agricultural research. Recent advances in Geographical Information Systems (GIS) now allow geocoding of agricultural data, which enable more sophisticated spatial analysis. Our current application concerns the development of statistical models for conducting spatial analysis of growth patterns in weeds. Our data comes from an experiment conducted in Waseca, Minnesota, that recorded growth of the weed Setariaspp. We capture the spatial variation in Setaria spp. growth using spatially-varying growth curves. An added challenge is that these designs are spatially replicated, with each plot being a lattice of sub-plots. Therefore, spatial variation may exist at different resolutions – a macro level variation between the plots and micro level variation between the sub-plots nested within each plot. We develop a Bayesian hierarchical framework for this setting. Flexible classes of models result which are fitted using simulation-based methods.

This is a preview of subscription content, access via your institution.

References

  1. Banerjee, S., Gamerman, D., and Gelfand, A.E. (2003a). Univariate and Multivariate Dynamic Spatial Models for Spatiotemporal Data. Research Report, Division of Biostatistics, University of Minnesota.

  2. S. Banerjee A.E. Gelfand C.F. Sirmans (2003b) ArticleTitleDirectional rates of change under spatial process models Journal of the American Statistical Association 98 946–954 Occurrence Handle10.1198/C16214503000000909

    Article  Google Scholar 

  3. Banerjee, S. and Johnson, G.A. (2005). Coregionalized sigle- and multiresolution spatially-varying growth curve modelling with application to weed growth. Research report 2005–007, Division of Biostatistics, University of Minnestoa.

  4. W.D. Batchelor B., Basso J.O. Paz (2002) ArticleTitleExamples of strategies to analyze spatial and temporal yield variability using crop models European Journal of Agronomy 18 141–58 Occurrence Handle10.1016/S1161-0301(02)00101-6

    Article  Google Scholar 

  5. J. Besag D. Higdon (1999) ArticleTitleBayesian analysis of agricultural field experiments Journal of the Royal Statistical Society: Series B 61 691–746

    Google Scholar 

  6. B.P. Carlin T.A. Louis (2000) Bayes and Empirical Bayes Methods in Data Analysis EditionNumber2 Chapman and Hall/CRC Press Boca Raton, FL

    Google Scholar 

  7. N. Colbach F., Forcella G.A. Johnson (2000) ArticleTitleSpatial and temporal stability of weed populations over five years Weed Science 48 366–77 Occurrence Handle1:CAS:528:DC%2BD3cXktl2gt78%3D

    CAS  Google Scholar 

  8. N. Cressie (1993) Statistics for Spatial Data EditionNumber2 Wiley New York

    Google Scholar 

  9. W. Deen C.J. Swanton L.A. Hunt (2001) ArticleTitleA mechanistic growth and development model of common ragweed Weed Science 49 723–31 Occurrence Handle1:CAS:528:DC%2BD38XjtlOhsQ%3D%3D

    CAS  Google Scholar 

  10. J.A. Dieleman D.A. Mortensen D.D. Buhler C.A., Cambardella T.B. Moorman (2000) ArticleTitleIdentifying association among site properties and weed species abundance Weed Science 48 567–75 Occurrence Handle1:CAS:528:DC%2BD3cXnt1ejs7s%3D

    CAS  Google Scholar 

  11. P.J. Diggle J.A., Tawn R.A. Moyeed (1998) ArticleTitleModel-based geostatistics (with discussion) Journal of the Royal Statistical Society. Series C (Applied Statistics) 47 299–350 Occurrence Handle10.1111/1467-9876.00113

    Article  Google Scholar 

  12. H.D. Foth (1990) Fundamentals of Soil Science John Wiley and Sons New York

    Google Scholar 

  13. D. Gamerman A.R.B. Moreira H. Rue (2003) ArticleTitleSpace-varying regression models Computational Statistics and Data Analysis 42 513–33 Occurrence Handle10.1016/S0167-9473(02)00211-6

    Article  Google Scholar 

  14. A.E. Gelfand S.K. Ghosh (1998) ArticleTitleModel choice: A minimum posterior predictive loss approach Biometrika 85 1–11 Occurrence Handle10.1093/biomet/85.1.1

    Article  Google Scholar 

  15. A.E. Gelfand H. Kim C.F. Sirmans S. Banerjee (2003) ArticleTitleSpatial modelling with spatially varying coefficient processes Journal of the American Statistical Association 98 387–96 Occurrence Handle10.1198/016214503000170

    Article  Google Scholar 

  16. A.E. Gelfand S.K. Sahu B.P. Carlin (1995) ArticleTitleEfficient parametrizations for normal linear mixed models Biometrika 82 479–88

    Google Scholar 

  17. Grzebyk and Wackernagel (1994). Multivariate analysis and spatial/temporal scales: Real and complex models. In Proceedings of XVIIth International Biometrics Conference, Hamilton (Ontario, Canada), Vol. 1, pp. 19–33.

  18. D.A. Harville (1997) Matrix Algebra from a Statistician’s Perspective Springer New York

    Google Scholar 

  19. G.A. Johnson D.A. Mortensen A.R. Martin (1995) ArticleTitleA simulation of herbicide use based on weed spatial distribution Weed Research 35 197–205

    Google Scholar 

  20. G.A. Johnson D.A. Mortensen C.A. Gotway (1996) ArticleTitleSpatial and temporal analysis of weed seedling populations using geostatistics Weed Science 44 704–10 Occurrence Handle1:CAS:528:DyaK28XltVGitrY%3D

    CAS  Google Scholar 

  21. G.A. Johnson D.R. Huggins (1998) ArticleTitleKnowledge-based decision support strategies: Linking spatial and temporal components within site-specific weed management Journal of Crop Production 2 225–38

    Google Scholar 

  22. K.V. Mardia C. Goodall (1993) Spatiotemporal analyses of multivariate environmental monitoring data G.P. Patil C.R. Rao (Eds) Multivariate Environmental Statistics Elsevier Amsterdam 347–86

    Google Scholar 

  23. R.J. Reuter J.C. Bell (2003) ArticleTitleHillslope hydrology and soil morphology for a wetland basin in south-central Minnesota Journal of the Soil Science Society of America 67 365–72 Occurrence Handle1:CAS:528:DC%2BD3sXnvFSgtA%3D%3D

    CAS  Google Scholar 

  24. Schneider, N. (2002), The influence of environmental properties on spatial and temporal weed population dynamics in a Mollisol catena. M.S. Thesis. Department of Agronomy and Plant Genetics, University of Minnesota.

  25. M.L. Stein (1999) Interpolation of Spatial Data: Some Theory for Kriging Springer New York

    Google Scholar 

  26. D.J. Spiegelhalter N.G. Best B.P. Carlin A. Linde Particlevan der (2002) ArticleTitleBayesian measures of model complexity and fit (with discussion and rejoinder) Journal of the Royal Statistical Society, Series B 64 583–639

    Google Scholar 

  27. J.A. Thompson J.C. Bell (1996) ArticleTitleColor index for identifying hydric conditions for seasonally saturated mollisols in minnesota Journal of the Soil Science Society of America 60 1979–88 Occurrence Handle1:CAS:528:DyaK2sXjsV2nsA%3D%3D

    CAS  Google Scholar 

  28. L. Waller B.P. Carlin H. Xia A.E. Gelfand (1997) ArticleTitleHierarchical spatio-temporal mapping of disease rates Journal of the American Statistical Association 92 607–17

    Google Scholar 

  29. S.D. Wilson D. Tilman (1995) ArticleTitleCompetitive responses of eight old-field plant species in four environments Ecology 76 1169–80

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudipto Banerjee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banerjee, S., Johnson, G.A., Schneider, N. et al. Modelling Replicated Weed Growth Data using Spatially-varying Growth Curves. Environ Ecol Stat 12, 357–377 (2005). https://doi.org/10.1007/s10651-005-1519-2

Download citation

Keywords

  • Bayesian inference
  • coregionalization
  • Gibbs sampler
  • growth curves
  • Kronecker products
  • Markov Chain Monte Carlo
  • separable models
  • Spatial process models