Primary school students’ understanding of polygons and the relationships between polygons

Abstract

The goal of this study was to characterise how third-grade primary school students understand the concept of polygon as well as relationships between polygons. Following a teaching experiment, students answered a questionnaire on the recognition of polygons and relationships between polygons, providing information about how a polygon was understood as an example of a class. Dimensional deconstruction of shapes (Duval, 2017) and Statistical Implicative Analysis (Gras, Suzuki, Guillet, & Spagnolo, 2008) were used to analyse students’ answers. The findings indicated that students’ understanding of the polygon concept depended on how students recognised and modified the relevant attributes considered in the definition of polygon. These results suggest that a progressive complexity underlies the understanding of the concept of polygon. Evidence of this progressive complexity was found in the relationship between recognising a figure as a polygon and transforming a non-example of a polygon into a polygon. Furthermore, the ability to identify a polygon as an instance of a class depended on the attribute that defines the class. That is, the fact of identifying a class of polygons was linked to the non-relevant attribute considered. Instructional implications are finally drawn regarding the key role of dimensional deconstruction to understand polygons and relationships between polygons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Battista, M. (2012). Cognition-based assessment & teaching of geometric shapes. Building on students’ reasoning. Portsmouth, NH: Heinemann.

    Google Scholar 

  2. Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843–908). Reston, VA: NCTM-IAP.

    Google Scholar 

  3. Bernabeu, M., & Llinares, S. (2017). How do six to nine years-old children understand geometrical shapes. Educación Matemática, 29(2), 9–35. https://doi.org/10.24844/EM2902.01

    Article  Google Scholar 

  4. Bernabeu, M., Moreno, M., & Llinares, S. (2018). Primary school children’s (9 years-old) understanding of quadrilaterals. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 155–162). Umeå: PME.

    Google Scholar 

  5. Clements, D., Swaminathan, S., Hannibal, M., & Sarama, J. (1999). Young children’s concepts of shape. Journal for Research in Mathematics Education, 30(2), 192–212. https://doi.org/10.2307/749610

    Article  Google Scholar 

  6. Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York, NY: MacMillan.

    Google Scholar 

  7. Couturier, R. (2008). CHIC: Cohesive Hierarchical Implicative Classification. In R. Gras, E. Suzuki, F. Guillet & F. Spagnolo (Eds.), Statistical implicative analysis (Vol. 127, pp. 41–53). Springer Berlin Heidelberg

  8. De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the Learning of Mathematics, 14(1), 11–18.

    Google Scholar 

  9. Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 142–157). Berlin: Springer.

    Chapter  Google Scholar 

  10. Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting North American Chapter of the International Group of PME (pp. 3–26). Columbus, OH: ERIC/CSMEE.

  11. Duval, R. (2017). Understanding the mathematical way of thinking – The registers of semiotic representations. Cham: Springer. https://doi.org/10.1007/978-3-319-56910-9

    Book  Google Scholar 

  12. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139–162.

    Article  Google Scholar 

  13. Fujita, T. (2012). Learners’ level of understanding of the inclusion relations of quadrilaterals and prototype phenomenon. The Journal of Mathematical Behavior, 31(1), 60–72.

    Article  Google Scholar 

  14. Fujita, T., Doney, J., & Wegerif, R. (2019). Students’ collaborative decision-making processes in defining and classifying quadrilaterals: A semiotic/dialogic approach. Educational Studies in Mathematics, 101, 341–356. https://doi.org/10.1007/s10649-019-09892-9

    Article  Google Scholar 

  15. Fujita, T., & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: Towards a theoretical framing. Research in Mathematics Education, 9(1, 2), 3–20.

    Article  Google Scholar 

  16. Gagatsis, A., Monoyiou, A., Delilyianni, E., Elia, I., Michael, P., Kalogirou, P., … Philippou, A. (2010). One way of assessing the understanding of a geometrical figure. Acta Didactica Universitatis Comenianae Mathematics, 10, 35–50.

    Google Scholar 

  17. Gagatsis, A., Sriraman, B., Elia, I., & Modestou, M. (2006). Exploring young children’s geometrical strategies. Nordic Studies in Mathematics Education, 11(2), 23–50.

    Google Scholar 

  18. Gras, R., & Kuntz, P. (2008). An overview of the statistical implicative analysis (SIA) development. In R. Gras, E. Suzuki, F. Guillet, & F. Spagnolo (Eds.), Statistical implicative analysis (pp. 11–40). Heidelberg, Germany: Springer.

    Chapter  Google Scholar 

  19. Gras, R., Suzuki, E., Guillet, F., & Spagnolo, F. (2008). Statistical implicative analysis. Theory and applications. London, UK: Springer.

    Book  Google Scholar 

  20. Halat, E., & Yesil-Dagli, U. (2016). Preschool students’ understanding of a geometric shape, the square. BOLEMA, 30(55), 830–848. https://doi.org/10.1590/1980-4415v30n55a25

    Article  Google Scholar 

  21. Hershkowitz, R. (1989). Visualization in geometry: Two sides of the coin. Focus on Learning Problems in Mathematics, 11(1), 61–76.

    Google Scholar 

  22. Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 70–95). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  23. Karpuz, Y., & Atasoy, E. (2019). Investigation of 9th grade students’ geometrical figure apprehension. European Journal of Educational Research, 8(1), 285–300.

    Article  Google Scholar 

  24. Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: Prototypicality and inclusion. ZDM. Mathematics Education, 47, 407–420. https://doi.org/10.1007/s11858-014-0658-z

    Article  Google Scholar 

  25. Kozakli-Ulger, T., & Tapan-Broutin, M. S. (2017). Pre-service mathematics teachers’ understanding of quadrilaterals and the internal relationships between quadrilaterals: The case of parallelograms. European Journal of Educational Research, 6(3), 331–345.

    Article  Google Scholar 

  26. Mesquita, A. L. (1998). On conceptual obstacles linked with external representations in geometry. Journal of Mathematical Behavior, 17(2), 183–195.

    Article  Google Scholar 

  27. Michael, S., Elia, I., Gagatsis, A., Theoklitou, A., & Savva, A. (2006). Levels of understanding of patterns in multiple representations. In J. Novotna, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (vol. 4, pp. 161–168). Prague: PME.

    Google Scholar 

  28. Monaghan, F. (2000). What difference does it make? Children views of the difference between some quadrilaterals. Educational Studies in Mathematics, 42(2), 179–196.

    Article  Google Scholar 

  29. Moreno, M., Bernabeu, M., Gagatsis, A., Llinares, S., & Panaoura, R. (2019). Changes in third-grade students’ understanding of polygons. In M. Graven, H. Venkat, A. Essien, & P. Vale (Eds.), Proceedings of the 43rd Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 97–104). Pretoria, South-Africa: PME.

  30. Pittalis, M., & Christou, C. (2013). Coding and decoding representations of 3D shapes. The Journal of Mathematical Behavior, 32(3), 673–689.

    Article  Google Scholar 

  31. Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM. Mathematics Education, 48(5), 691–719.

    Article  Google Scholar 

  32. Sinclair, N., Cirillo, M., & de Villiers, M. (2017). The learning and teaching geometry. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 457–489). Reston, VA: NCTM.

    Google Scholar 

  33. Trigueros, M., & Escandón, C. (2008). Los conceptos relevantes en el aprendizaje de la graficación. Un análisis a través de la estadística implicativa. Revista Mexicana de Investigación Educativa, 13(36), 59–85.

    Google Scholar 

  34. Tsamir, P., Tirosh, D., & Levenson, E. (2008). Intuitive nonexamples: The case of triangles. Educational Studies in Mathematics, 69, 81–95. https://doi.org/10.1007/s10649-008-9133-5

    Article  Google Scholar 

  35. Tsamir, P., Tirosh, D., Levenson, E., Barbakai, R., & Tabach, M. (2015). Early-years teachers’ concept images and concept definitions: Triangles, circles, and cylinders. ZDM. Mathematics Education, 47, 497–509.

    Google Scholar 

  36. Walcott, C., Mohr, D., & Kastberg, S. (2009). Making sense of shape: An analysis of children’s written responses. Journal of Mathematical Behavior, 28, 30–40. https://doi.org/10.1016/j.jmathb.2009.04.001

    Article  Google Scholar 

  37. Wang, S., & Kinzel, M. (2014). How do they know it is a parallelogram? Analysing geometric discourse at van Hiele Level 3. Research in Mathematics Education, 16(3), 288–305. https://doi.org/10.1080/14794802.2014.933711

    Article  Google Scholar 

  38. Yesil-Dagli, U., & Halat, E. (2016). Young children’s conceptual understanding of triangle. Eurasia Journal of Mathematics, Science & Technology Education, 12(2), 189–202. https://doi.org/10.12973/eurasia.2016.1398a

    Article  Google Scholar 

Download references

Acknowledgements

We are pleased of the encouragement recived by Dr. Gagatsis and his research group of the University of Cyprus

Funding

This research was supported in part by the project Prometheus/2017/135 of the Generalitat Valenciana (Spain) and by the University of Alicante (FPU2017-014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Melania Bernabeu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernabeu, M., Moreno, M. & Llinares, S. Primary school students’ understanding of polygons and the relationships between polygons. Educ Stud Math 106, 251–270 (2021). https://doi.org/10.1007/s10649-020-10012-1

Download citation

Keywords

  • Concept of polygon
  • Dimensional deconstruction
  • Geometric thinking
  • Implicative analysis
  • Primary education