Advertisement

Growth in children’s understanding of generalizing and representing mathematical structure and relationships

  • Maria BlantonEmail author
  • Isil Isler-Baykal
  • Rena Stroud
  • Ana Stephens
  • Eric Knuth
  • Angela Murphy Gardiner
Article

Abstract

We share here results from a quasi-experimental study that examines growth in students’ algebraic thinking practices of generalizing and representing generalizations, particularly with variable notation, as a result of an early algebra instructional sequence implemented across grades 3–5. Analyses showed that, while there were no significant differences between experimental and control students on a grade 3 pre-assessment measuring students’ capacity for generalizing and representing generalizations, experimental students significantly outperformed control students on post-assessments at each of grades 3–5. Moreover, experimental students were able to more flexibly interpret variable in different roles and were better able to use variable notation in meaningful ways to represent arithmetic properties, expressions and equations, and functional relationships. This study provides important evidence that young children can learn to think algebraically in powerful ways and suggests that the earlier introduction of algebraic concepts and practices is beneficial to students.

Keywords

Algebraic thinking Early algebra Instructional intervention Quantitative methods Elementary grades 

Notes

Acknowledgments

The research reported here was supported in part by the National Science Foundation under Awards No. 1219605 and 1219606. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal examination of middle school students’ understanding of the equal sign and equivalent equations. Mathematical Thinking and Learning, 9(3), 221–247.  https://doi.org/10.1080/10986060701360902 CrossRefGoogle Scholar
  2. Baroody, A. J., & Ginsburg, H. P. (1983). The effects of instruction on children’s understanding of the “equals” sign. The Elementary School Journal, 84, 199–212.  https://doi.org/10.1086/461356 CrossRefGoogle Scholar
  3. Bastable, V., & Schifter, D. (2008). Classroom stories: Examples of elementary students engaged in early algebra. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 165–184). New York, NY: Lawrence Erlbaum Associates.Google Scholar
  4. Blanton, M., Brizuela, B., Gardiner, A., & Sawrey, K. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202.  https://doi.org/10.1007/s10649-016-9745-0 CrossRefGoogle Scholar
  5. Blanton, M., Brizuela, B., Gardiner, A., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46(5), 511–558.CrossRefGoogle Scholar
  6. Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., Stroud, R., Fonger, N., & Stylianou, D. (2018). Implementing a framework for early algebra. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 27–49). Hamburg, Germany: Springer.Google Scholar
  7. Blanton, M., Levi, L., Crites, T., & Dougherty, B. (2011). Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3–5. Essential Understanding Series. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  8. Blanton, M., Otalora Sevilla, Y., Brizuela, B., Gardiner, A., Sawrey, K., Gibbons, A., & Yangsook, K. (2018). Exploring kindergarten students’ early understandings of the equal sign. Mathematical Thinking and Learning, 20(3), 167–201.  https://doi.org/10.1080/10986065.2018.1474534 CrossRefGoogle Scholar
  9. Blanton, M., Stephens, A., Knuth, E., Gardiner, A., Isler, I., & Kim, J. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39–87.  https://doi.org/10.5951/jresematheduc.46.1.0039
  10. Blanton, M., Stroud, R., Stephens, A., Gardiner, A., Stylianou, D., Knuth, E., Isler, I., & Strachota, S. (2019). Does early algebra matter? The effectiveness of an early algebra intervention in grades 3–5. American Educational Research Journal.  https://doi.org/10.3102/0002831219832301.
  11. Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: A global dialogue from multiple perspectives. Heidelberg, Germany: Springer.Google Scholar
  12. Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in elementary school. Portsmouth, NH: Heinemann.Google Scholar
  13. Carraher, D., & Schliemann, A. (2007). Early algebra and algebraic reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 669–705). Charlotte: Information Age.Google Scholar
  14. Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115.Google Scholar
  15. Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same as algebra early. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 235–272). Mahwah, NJ: Lawrence Erlbaum Associates/Taylor & Francis Group.Google Scholar
  16. Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81–89.CrossRefGoogle Scholar
  17. Clements, D. H., & Sarama, J. (2008). Experimental evaluation of the effects of a research-based preschool mathematics curriculum. American Educational Research Journal, 45(2), 443–494.  https://doi.org/10.3102/0002831207312908 CrossRefGoogle Scholar
  18. Cooper, T., & Warren, E. (2011). Years 2 to 6 students’ ability to generalize: Models, representations, and theory for teaching and learning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 187–214). Heidelberg: Springer.CrossRefGoogle Scholar
  19. Daro, P., Mosher, F., & Corcoran, T. (2011). Learning trajectories in mathematics: A foundation for standards, curriculum, assessment, and instruction. Retrieved from http://www.cpre.org.
  20. Fonger, N. L., Stephens, A., Blanton, M., Isler, I., Knuth, E., & Gardiner, A. (2018). Developing a learning progression for curriculum, instruction, and student learning: An example from early algebra research. Cognition and Instruction, 36(1), 30–55.  https://doi.org/10.1080/07370008.2017.1392965 CrossRefGoogle Scholar
  21. Jones, I., Inglis, M., Gilmore, C., & Dowens, M. (2012). Substitution and sameness: Two components of a relational conception of the equals sign. Journal of Experimental Child Psychology, 113(1), 166–176.CrossRefGoogle Scholar
  22. Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Mahwah, NJ: Lawrence Erlbaum Associates/Taylor & Francis Group.Google Scholar
  23. Kaput, J., Blanton, M., & Moreno, L. (2008). Algebra from a symbolization point of view. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 19–55). New York, NY: Lawrence Erlbaum Associates.Google Scholar
  24. Kieran, C. (Ed.). (2018). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice. Hamburg, Germany: Springer.Google Scholar
  25. Knuth, E., Stephens, A., McNeil, N., & Alibali, M. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37(4), 297–312.Google Scholar
  26. Maloney, A. P., Confrey, J., & Nguyen, K. (Eds.). (2011). Learning over time: Learning trajectories in mathematics education. Charlotte, NC: Information Age.Google Scholar
  27. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht, the Netherlands: Springer.Google Scholar
  28. Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43(3), 316–350.CrossRefGoogle Scholar
  29. Morris, A. K. (2009). Representations that enable children to engage in deductive arguments. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K–16 perspective (pp. 87–101). Mahwah, NJ: Taylor & Francis Group.Google Scholar
  30. Moses, R. P., & Cobb, C. E. (2001). Radical equations: Math literacy and civil rights. Boston, MA: Beacon Press.Google Scholar
  31. Moss, J., Beatty, R., Barkin, S., & Shillolo, G. (2008). “What is your theory? What is your rule?”: Fourth graders build an understanding of functions through patterns and generalizing problems. In C. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics: 70th yearbook (pp. 155–168). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  32. Museus, S., Palmer, R. T., Davis, R. J., & Maramba, D. C. (2011). Racial and ethnic minority students' success in STEM education. Hoboken, NJ: Jossey-Bass.Google Scholar
  33. National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Council of Chief State School Officers Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf Google Scholar
  34. O’Donnell, C. (2008). Defining, conceptualizing, and measuring fidelity of implementation and its relationship to outcomes in K-12 curriculum intervention research. Review of Educational Research, 78(1), 33–84.CrossRefGoogle Scholar
  35. Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37–62.Google Scholar
  36. Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In T. P. Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 136–155). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  37. Rittle-Johnson, B., Matthews, P. G., Taylor, R. S., & McEldoon, K. L. (2011). Assessing knowledge of mathematical equivalence: A construct-modeling approach. Journal of Educational Psychology, 103, 85–104.  https://doi.org/10.1037/a0021334 CrossRefGoogle Scholar
  38. Russell, S. J., Schifter, D., Kasman, R., Bastable, V., & Higgins, T. (2017). But why does it work?: Mathematical argument in the elementary classroom. Portsmouth, NH: Heinemann.Google Scholar
  39. Schifter, D. (1999). Reasoning about operations: Early algebraic thinking in grades K–6. In L. V. Stiff & F. R. Curio (Eds.), Developing mathematical reasoning in grades K–12: 1999 yearbook (pp. 62–81). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  40. Schifter, D. (2009). Representation-based proof in the elementary grades. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across grades: A K–16 perspective (pp. 71–86). New York: Routledge.Google Scholar
  41. Schifter, D., Monk, S., Russell, S. J., & Bastable, V. (2008). Early algebra: What does understanding the laws of arithmetic mean in the elementary grades? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 413–447). New York, NY: Lawrence Erlbaum Associates.Google Scholar
  42. Schoenfeld, A. H. (1995). Is thinking about 'Algebra' a misdirection? In C. Lacampagne, W. Blair, & J. Kaput (Eds.), The algebra colloquium. Volume 2: Working group papers (pp. 83–86). Washington, DC: US Department of Education, Office of Educational Research and Improvement.Google Scholar
  43. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.  https://doi.org/10.1007/BF00302715 CrossRefGoogle Scholar
  44. Shin, N., Stevens, S. Y., Short, H., & Krajcik, J. S. (2009). Learning progressions to support coherence curricula in instructional material, instruction, and assessment design. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.Google Scholar
  45. Stephens, A., Knuth, E., Blanton, M., Isler, I., Gardiner, A., & Marum, T. (2013). Equation structure and the meaning of the equal sign: The impact of task selection in eliciting elementary students’ understandings. The Journal of Mathematical Behavior, 32(2), 173–182.CrossRefGoogle Scholar
  46. Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 386–420). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  47. Stephens, A. C., Fonger, N. L., Strachota, S., Isler, I., Blanton, M., Knuth, E., & Gardiner, A. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143–166.  https://doi.org/10.1080/10986065.2017.1328636 CrossRefGoogle Scholar
  48. Stevens, S. Y., Shin, N., & Krajcik, J. S. (2009). Towards a model for the development of an empirically tested learning progression. Paper presented at the learning progressions in science (LeaPS) conference, Iowa City, IA.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.TERCCambridgeUSA
  2. 2.Middle East Technical UniversityCankaya/AnkaraTurkey
  3. 3.Merrimack CollegeNorth AndoverUSA
  4. 4.University of Wisconsin MadisonMadisonUSA
  5. 5.University of Texas AustinAustinUSA

Personalised recommendations