Skip to main content

Combining material- and community-based implementation strategies for scaling up: the case of supporting low-achieving middle school students

Abstract

In order to better facilitate scaling up of classroom innovations, two complementary strategies have often been discussed. The community-based strategy emphasizes the necessity for professional learning communities and their embedding in institutional settings. The material-based strategy starts from well-designed teaching materials, which are considered catalysts for bringing teaching approaches to many classrooms. The implementation project reported on in this study systematically combines both strategies and takes a third strategy into account: the systemic strategy of addressing higher levels of the school system, such as the school and district levels. The goal of the project is to help teachers to better support low-achieving students at the beginning of German secondary schools (grades 5 and 6). The results of the accompanying research in a quasi-experimental study, reported in this article, show that a combination of strategies can be effective: the participating low-achieving students had higher learning gains than a control group did. The deeper analysis provides insights into the complexities of the interplay of community aspects, institutional backgrounds, and the power of substantial teaching materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adler, J., & Jaworski, B. (2009). Public writing in the field of mathematics teacher education. In R. Even & D. Ball (Eds.), The professional education and development of teachers of mathematics (pp. 249–254). New York: Springer.

    Chapter  Google Scholar 

  • Andersson, U. (2010). Skill development in different components of arithmetic and basic cognitive functions. Journal of Educational Psychology, 102(1), 115–134.

    Article  Google Scholar 

  • Bell, A. (1993). Some experiments in diagnostic teaching. Educational Studies in Mathematics, 24(1), 115–137.

    Article  Google Scholar 

  • Boaler, J. (2002). Experiencing school mathematics. Mahwah: Lawrence Erlbaum.

    Book  Google Scholar 

  • Bonsen, M., & Rolff, H.-G. (2006). Professionelle Lerngemeinschaften von Lehrerinnen und Lehrern [Professional learning communities of teachers]. Zeitschrift für Pädagogik, 52(2), 167–185.

    Google Scholar 

  • Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q. (2010). Organizing schools for improvement. Chicago: University of Chicago Press.

    Google Scholar 

  • Burkhardt, H. (2006). From design research to large scale impact. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 121–150). London: Routledge.

    Google Scholar 

  • Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research. Educational Researcher, 32(9), 3–14.

    Article  Google Scholar 

  • Cheung, A. C., & Slavin, R. E. (2016). How methodological features affect effect sizes in education. Educational Researcher, 45(5), 283–292.

    Article  Google Scholar 

  • Cobb, P., & Jackson, K. (2012). Analyzing educational policies: A learning design perspective. The Journal of the Learning Sciences, 21, 487–521.

    Article  Google Scholar 

  • Coburn, C. E. (2003). Rethinking scale: Moving beyond numbers to deep and lasting change. Educational Researcher, 32(6), 3–12.

    Article  Google Scholar 

  • Darling-Hammond, L. (1997). Restructuring schools for student success. In A. H. Halsey, H. Lauder, P. Brown, & A. Stuart Wells (Eds.), Education—Culture—Economy, and Society (pp. 332–353). Oxford: Oxford University Press.

    Google Scholar 

  • Darling-Hammond, L., & Richardson, N. (2009). Teacher learning: What matters? Educational Leadership, 66(5), 46–53.

    Google Scholar 

  • Euler, D., & Sloane, P. (1998). Implementation als Problem der Modellversuchsforschung [Implementation as a problem of field research]. Unterrichtswissenschaft, 26(4), 312–326.

    Google Scholar 

  • Fischer, C., & Rieck, K. (2014). Improving teaching in science and mathematics. In R. E. Slavin (Ed.), Classroom management and assessment. Proven programs in education (pp. 110–115). Corwin: Thousand Oaks.

    Chapter  Google Scholar 

  • Fischer, C., Rieck, K., Döring, B., & Köller, O. (2017). Externe Evaluation von „Mathe sicher können“. Ergebnisse der Gesamtbefragung der Lehrkräfte [External evaluation of “Mastering Math”. Results of the teacher survey]. Kiel: IPN. http://mathe-sicher-koennen.dzlm.de

  • Fischer, C., Schöber, C., Döring, B., & Köller, O. (2017). Externe Evaluation von “Mathe sicher können”. Ergebnisse der Testung der Lernenden [External evaluation of “Mastering Math”. Results of the student assessment]. Kiel: IPN. http://mathe-sicher-koennen.dzlm.de

  • Gräsel, C., Fußangel, K., & Pröbstel, C. (2006). Die Anregung von Lehrkräften zur Kooperation—eine Aufgabe für Sisyphos? [Initiating teachers’ cooperation. A task for Sisyphos?]. Zeitschrift für Pädagogik, 52(2), 205–219.

    Google Scholar 

  • Gravemeijer, K., Bruin-Muurling, G., Kraemer, J.-M., & van Stiphout, I. (2016). Shortcomings of mathematics education reform in the Netherlands: A paradigm case? Mathematical Thinking and Learning, 18(1), 25–44.

    Article  Google Scholar 

  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Charlotte: Information Age.

    Google Scholar 

  • Hußmann, S., Nührenbörger, M., Prediger, C., Selter, C., & Drücke-Noe, C. (2014). Schwierigkeiten in Mathematik begegnen [Overcoming difficulties in mathematics]. Praxis der Mathematik, 56(56), 2–8.

  • Krainer, K. (2008). Individuals, teams, communities and networks: Participants and ways of participation in mathematics teacher education. In K. Krainer & T. Wood (Eds.), International handbook of mathematics teacher education (Vol. 3, pp. 1–10). Rotterdam: Sense.

    Google Scholar 

  • Kullmann, H. (2012). Lesson Study—eine konsequente Form unterrichtsbezogener Lehrerkooperation. In S. G. Huber & F. Ahlgrimm (Eds.), Kooperation. Aktuelle Forschung zur Kooperation in und zwischen Schulen sowie mit anderen Partnern (pp. 69–88). Waxmann: Münster.

    Google Scholar 

  • Lachance, A., & Confrey, J. (2003). Interconnecting content and community: A qualitative study of secondary mathematics teachers. Journal of Mathematics Teacher Education, 6(2), 107–137.

    Article  Google Scholar 

  • Llinares, S., & Krainer, K. (2006). Professional aspects of teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of Mathematics Education (pp. 429–459). Rotterdam: Sense.

  • Lomos, C., Hofman, R. H., & Bosker, R. J. (2011). Professional communities and student achievement—A meta-analysis. School Effectiveness and School Improvement, 22(2), 121–148.

    Article  Google Scholar 

  • Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM, 45(6), 779–795.

    Article  Google Scholar 

  • Maccini, P., Mulcahy, C. A., & Wilson, M. G. (2007). A follow-up of mathematics interventions for secondary students with learning disabilities. Learning Disabilities Research & Practice, 22(1), 58–74.

    Article  Google Scholar 

  • McDuffie, A. M., & Mather, M. (2006). Reification of instructional materials as part of the process of developing problem-based practices in mathematics education. Teachers and Teaching: Theory and Practice, 12, 435–459.

    Article  Google Scholar 

  • Moser Opitz, E. (2007). Rechenschwäche/Dyskalkulie [Mathematical learning difficulties/Discalculia]. Bern: Haupt.

  • Moser Opitz, E., Freesemann, O., Grob, U., & Prediger, S. (2016). BASIS-MATH-G 4+-5. Gruppentest zur Basisdiagnostik Mathematik [Group test for basic assessment mathematics]. Bern: Hogrefe.

  • Moser Opitz, E., Freesemann, O., Prediger, S., Grob, U., Matull, I., & Hußmann, S. (2017). Remediation for students with mathematics difficulties. Journal of Learning Disabilities, 50(6), 724–736.

    Article  Google Scholar 

  • Nührenbörger, M., & Schwarzkopf, R. (2010). Die Entwicklung mathematischen Wissens in sozial-interaktiven Kontexten [the development of mathematical knowledge in social-interactive contexts]. In C. Böttinger, K. Bräuning, M. Nührenbörger, R. Schwarzkopf, & E. Söbbeke (Eds.), Mathematik im Denken der Kinder (pp. 73–81). Seelze: Klett-Kallmeyer.

    Google Scholar 

  • Prediger, S., Freesemann, O., Moser Opitz, E., & Hußmann, S. (2013). Unverzichtbare Verstehensgrundlagen statt kurzfristige Reparatur [Indispensable basic needs rather than short-term repair]. Praxis der Mathematik, 55(51), 12–17.

    Google Scholar 

  • Prenzel, M., Friedrich, A., & Stadler, M. (2008). Von Sinus lernen. Wie Unterrichtsentwicklung gelingt [Learning from the model project Sinus. How classroom development can succeed]. Seelze: Kallmeyer.

  • Prenzel, M., Sälzer, C., Klieme, E., & Köller, O. (Eds.). (2013). PISA 2012. Münster: Waxmann.

    Google Scholar 

  • Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75(2), 211–246.

    Article  Google Scholar 

  • Roesken-Winter, B., Hoyles, C., & Bloemeke, S. (2015). Evidence-based CPD: Scaling up sustainable interventions. ZDM Mathematics Education, 47(1), 1–12.

    Article  Google Scholar 

  • Rogers, E. M. (2003). Diffusion of innovations. New York: The Free Press.

    Google Scholar 

  • Schellenbach–Zell, J., Rürup, M., Fussangel, K., & Gräsel, C. (2008). Bedingungen erfolgreichen Transfers am Beispiel von Chemie im Kontext [Conditions of successful transfer for the example of Chemistry in Context]. In R. Demuth, C. Gräsel, B. Ralle, & I. Parchmann (Eds.), Chemie im Kontext (pp. 81–121). Münster: Waxmann.

    Google Scholar 

  • Selter, C., & Bonsen, M. (2018). Konzeptionelles und Beispiele aus dem Projekt PIKAS [Ideas and examples from the project PIKAS]. In R. Biehler, T. Lange, T. Leuders, B. Roesken-Winter, P. Scherer, & C. Selter (Eds.), Mathematikfortbildungen professionalisieren (pp. 143–164). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Selter, C., Prediger, S., Nührenbörger, M., & Hußmann, S. (Eds.). (2014). Mathe sicher können—Natürliche Zahlen. Diagnose- und Förderkonzept [Mastering Math—Natural numbers. Material for formative assessment and intervention]. Berlin: Cornelsen.

  • Selter, C., Wessel, J., Walther, G., & Wendt, H. (2012). Mathematische Kompetenzen im internationalen Vergleich. Testkonzeption und Ergebnisse. In W. Bos, H. Wendt, O. Köller, & C. Selter (Eds.), Mathematische und naturwissenschaftliche Kompetenz von Grundschulkindern (pp. 69–122). Münster: Waxmann.

    Google Scholar 

  • Sundermann, B., & Selter, C. (2013). Beurteilen und Fördern im Mathematikunterricht [Assessing and fostering in mathematics classrooms]. Berlin: Cornelsen.

  • Swan, M. (2007). The impact of task-based professional development on teachers' practices and beliefs. Journal of Mathematics Teacher Education, 10(4–6), 217–237.

    Article  Google Scholar 

  • Takahashi, A., & Yoshida, M. (2004). Lesson-study communities. Teaching Children Mathematics, 10(9), 436–437.

    Google Scholar 

Download references

Acknowledgements

We thank the project team in Dortmund (Sabrina Lübke, Stephan Hußmann, Corinna Mosandl, Marcus Nührenbörger, Birte Pöhler, Gerd Seifert, and Lara Sprenger), the evaluation team in Kiel (Franziska Trepke, Brigitte Döring, and Olaf Köller), and all the involved facilitators, schools, and teachers.

Funding

The research was funded by the German Telekom Foundation and is conducted within the DZLM research program (Deutsches Zentrum für Lehrerbildung Mathematik: German Center for Mathematics Teacher Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Prediger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prediger, S., Fischer, C., Selter, C. et al. Combining material- and community-based implementation strategies for scaling up: the case of supporting low-achieving middle school students. Educ Stud Math 102, 361–378 (2019). https://doi.org/10.1007/s10649-018-9835-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-018-9835-2

Keywords

  • Implementation
  • Material for scaling up
  • Professional learning communities
  • Low-achieving students