Skip to main content
Log in

Analysis of the cognitive unity or rupture between conjecture and proof when learning to prove on a grade 10 trigonometry course

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

We present results from a classroom-based intervention designed to help a class of grade 10 students (14–15 years old) learn proof while studying trigonometry in a dynamic geometry software environment. We analysed some students’ solutions to conjecture-and-proof problems that let them gain experience in stating conjectures and developing proofs. Grounded on a conception of proof that includes both empirical and deductive mathematical argumentations, we show the trajectories of some students progressing from developing basic empirical proofs towards developing deductive proofs and understanding the role of conjectures and proofs in mathematics. Our analysis of students’ solutions is based on networking Boero et al.’s construct of cognitive unity of theorems, Pedemonte’s structural and referential analysis of conjectures and proofs, and Balacheff and Margolinas’ cK¢ model, while using Toulmin schemes to represent students’ productions. This combination has allowed us to identify several emerging types of cognitive unity/rupture, corresponding to different ways of solving conjecture-and-proof problems. We also show that some types of cognitive unity/rupture seem to induce students to produce deductive proofs, whereas other types seem to induce them to produce empirical proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antonini, S. (2003). Non-examples and proof by contradiction. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 27th PME Conference (Vol. 2, pp. 49–56). Honolulu, HI: PME.

    Google Scholar 

  • Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? ZDM—International Journal on Mathematics Education, 40(3), 401–412.

  • Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME Conference (Vol. 2, pp. 24–31). Stellenbosch, Republic of South Africa: PME.

    Google Scholar 

  • Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., Paola, D., & Gallino, G. (1998). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME Conference (Vol. 2, pp. 32–39). Stellenbosch, Republic of South Africa: PME.

    Google Scholar 

  • Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp. 216–235). London: Hodder & Stoughton.

    Google Scholar 

  • Balacheff, N., & Margolinas, C. (2005). cK¢ modèle de connaissances pour le calcul de situations didactiques. In A. Mercier & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble, France: La Pensée Sauvage.

    Google Scholar 

  • Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Boero, P., Garuti, R., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th PME Conference (Vol. 2, pp. 113–120). Valencia, Spain: PME.

  • Boero, P., Douek, N., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: A contribution to theoretical perspectives and their classroom implementation. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th PME Conference (Vol. 1, pp. 179–209). Belo Horizonte, Brazil: PME.

    Google Scholar 

  • Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22(3), 233–261.

    Article  Google Scholar 

  • Fiallo, J. (2011). Estudio del proceso de demostración en el aprendizaje de las razones trigonométricas en un ambiente de geometría dinámica (Unpublished doctoral dissertation). University of Valencia, Valencia, Spain. Retrieved from https://www.educacion.gob.es/teseo/mostrarRef.do?ref=936657

  • Hanna, G., & de Villiers, M. (Eds.). (2012). Proof and proving in mathematics education. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education (Vol. III, pp. 234–283). Providence, RI: American Mathematical Society.

    Chapter  Google Scholar 

  • Laborde, C., Kynigos, C., Hollebrands, K., & Strässer, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 275–304). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM - International Journal on Mathematics Education, 43(3), 325–336.

  • Maher, C. A. (2009). Children’s reasoning: Discovering the idea of mathematical proof. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades. A K-16 perspective (pp. 120–132). New York: Routledge.

    Google Scholar 

  • Mariotti, M. A. (2001). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257–281.

    Article  Google Scholar 

  • Mariotti, M. A. (2006). Proof and proving in mathematics education. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education. Past, present and future (pp. 173–204). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Marrades, R., & Gutiérrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1/2), 87–125.

    Article  Google Scholar 

  • Ministerio de Educación Nacional (MEN). (2006). Estándares básicos de matemáticas. Bogotá, Colombia: Author.

  • Pedemonte, B. (2002). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration dans le apprentisage des mathématiques. (Doctoral dissertation). Université Joseph Fourier-Grenoble I, Grenoble, France.

  • Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration. Recherches en Didactique des Mathématiques, 25(3), 313–348.

    Google Scholar 

  • Pedemonte, B., & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model. The Journal of Mathematical Behavior, 41, 104–122.

    Article  Google Scholar 

  • Pratt, D., & Noss, R. (2010). Designing for mathematical abstraction. International Journal of Computers for Mathematical Learning, 15(2), 81–97.

    Article  Google Scholar 

  • Reid, D. A., & Knipping, C. (2010). Proof in mathematics education. Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of practice: Classroom-based interventions in mathematics education. ZDM—International Journal on Mathematics Education, 45(3), 333–341.

  • Stylianides, G. J., Stylianides, A. J., & Philippou, G. N. (2007). Preservice teachers’ knowledge of proof by mathematical induction. Journal of Mathematics Teacher Education, 10(3), 145–166.

    Article  Google Scholar 

  • Toulmin, S. E. (2003). The uses of argument (updated edition of the 1958 book). Cambridge, UK: Cambridge University Press.

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers of this paper and the editors of the special issue for their thorough revision and many valuable suggestions that helped us to improve earlier versions of the paper. We are also grateful to the teacher of the Floridablanca school and his pupils for agreeing to collaborate in this experience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiallo, J., Gutiérrez, A. Analysis of the cognitive unity or rupture between conjecture and proof when learning to prove on a grade 10 trigonometry course. Educ Stud Math 96, 145–167 (2017). https://doi.org/10.1007/s10649-017-9755-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-017-9755-6

Keywords

Navigation