Educational Studies in Mathematics

, Volume 96, Issue 2, pp 187–205 | Cite as

Affecting the flow of a proof by creating presence—a case study in Number Theory

  • Mika Gabel
  • Tommy Dreyfus


The notion of flow of a proof encapsulates mathematical, didactical, and contextual aspects of proof presentation. A proof may have different flows, depending on the lecturer’s choices regarding its presentation. Adopting Perelman’s New Rhetoric (PNR) as a theoretical framework, we designed methods to assess aspects of the flow of a proof. We present a case study from a Number Theory class at the beginning undergraduate level, focusing on an intervention concerning one lesson given in two consecutive years. The intervention consisted of a discussion with the lecturer about findings from Year-1 and potential changes in the flow of the proof before the Year-2 lesson. We analyze two aspects of the flow of the proof: the scope and organization of the argumentation and the presence (in the PNR sense) of different elements. Our analysis revealed that the intervention caused global and local changes in the flow and that PNR enables us to capture these changes.


Proof teaching Flow of proof Perelman’s New Rhetoric Mathematical argumentation Creating presence 



We would like to thank an anonymous reviewer for encouraging us and helping us to situate our study in the wider research landscape.

Supplementary material

10649_2016_9746_MOESM1_ESM.docx (229 kb)
ESM 1 (DOCX 229 kb)


  1. Alcock, L. (2010). Mathematicians’ perspectives on the teaching and learning of proof. In F. Hitt, D. Holton, & P. W. Thompson (Eds.), Research in collegiate mathematics education VII (pp. 63–92). Providence, RI: AMS, CBMS.CrossRefGoogle Scholar
  2. Alcock, L., Hodds, M., Roy, S., & Inglis, M. (2015). Investigating and improving undergraduate proof comprehension. Notices of the American Mathematical Society, 62, 741–752.CrossRefGoogle Scholar
  3. Fukawa-Connelly, T., Johnson, E., & Keller, R. (2016). Can math education research improve the teaching of abstract algebra? Notices of the American Mathematics Society, 63, 276–281.CrossRefGoogle Scholar
  4. Fukawa-Connelly, T. P., & Newton, C. (2014). Analyzing the teaching of advanced mathematics courses via the enacted example space. Educational Studies in Mathematics, 87, 323–349.CrossRefGoogle Scholar
  5. Gabel, M., & Dreyfus, T. (2013). The flow of a proof—The example of the Euclidean algorithm. In M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 321–328). Kiel, Germany: PME.Google Scholar
  6. Grundey, S. (2014). Beweisvorstellungen und eigenständiges Beweisen: Entwicklung und vergleichend empirische Untersuchung eines Unterrichtskonzepts am Ende der Sekundarstufe. Wiesbaden: Springer, Fachmedien, Perspektiven der Mathematikdidaktik.Google Scholar
  7. Hemmi, K. (2008). Students’ encounter with proof: The condition of transparency. ZDM - The International Journal on Mathematics Education, 40, 413–426.CrossRefGoogle Scholar
  8. Hemmi, K. (2010). Three styles characterising mathematicians’ pedagogical perspectives on proof. Educational Studies in Mathematics, 75, 271–291.CrossRefGoogle Scholar
  9. Lai, Y., & Weber, K. (2014). Factors mathematicians profess to consider when presenting pedagogical proofs. Educational Studies in Mathematics, 85, 93–108.CrossRefGoogle Scholar
  10. Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate mathematics classroom. Educational Studies in Mathematics, 67, 205–216.CrossRefGoogle Scholar
  11. Lew, K., Fukawa-Connelly, T. P., Mejía-Ramos, J. P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the mathematics professor is trying to convey. Journal for Research in Mathematics Education, 47, 162–198.CrossRefGoogle Scholar
  12. Mason, J. (1998). Enabling teachers to be real teachers: Necessary levels of awareness and structure of attention. Journal of Mathematics Teacher Education, 1, 243–267.CrossRefGoogle Scholar
  13. Mejia-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics education research. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI Study 19 Conference: Proof and Proving in Mathematics Education (Vol. 2, pp. 88–93). Taipei, Taiwan: PME.Google Scholar
  14. Mills, M. (2014). A framework for example usage in proof presentations. The Journal of Mathematical Behavior, 33, 106–118.CrossRefGoogle Scholar
  15. Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation (J. Wilkinson & P. Weaver, Trans.). Notre Dame, IN: University of Notre Dame.Google Scholar
  16. Pinto, A. (2013). Variability in university mathematics teaching: A tale of two instructors. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 2416–2425). Ankara, Turkey: Middle East Technical University.Google Scholar
  17. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7, 5–41.CrossRefGoogle Scholar
  18. Roy, S., Alcock, L., & Inglis, M. (2010). Undergraduates’ proof comprehension: A comparative study of three forms of proof presentation. Retrieved from
  19. Speer, N. M., Smith, J. P., & Horvath, A. (2010). Collegiate mathematics teaching: An unexamined practice. Journal of Mathematical Behavior, 29, 99–114.CrossRefGoogle Scholar
  20. Stylianides, A. J., & Stylianides, G. J. (2009). Proof constructions and evaluations. Educational Studies in Mathematics, 72, 237–253.CrossRefGoogle Scholar
  21. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30, 161–177.CrossRefGoogle Scholar
  22. Toulmin, S. E. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.Google Scholar
  23. Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one professor’s lectures and proofs in an introductory real analysis course. Journal of Mathematical Behavior, 23, 115–133.CrossRefGoogle Scholar
  24. Weber, K. (2012). Mathematicians’ perspectives on their pedagogical practice with respect to proof. International Journal of Mathematical Education in Science and Technology, 43, 463–482.CrossRefGoogle Scholar
  25. Weber, K., Hanna, G., Harel, G., Kidron, I., Selden, A., & Selden, J. (2013). Justification and proof in mathematics and mathematics education. In M. Fried & T. Dreyfus (Eds.), Mathematics and mathematics education: Searching for common ground (pp. 237–257). Springer: Advances in Mathematics Education series.Google Scholar
  26. Weinberg, A., Wiesner, E., & Fukawa-Connelly, T. (2016). Mathematics lectures as narratives: Insights from network graph methodology. Educational Studies in Mathematics, 91, 203–226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Afeka - Tel Aviv Academic College of EngineeringTel AvivIsrael

Personalised recommendations