Educational Studies in Mathematics

, Volume 94, Issue 2, pp 161–182 | Cite as

Professional competencies of (prospective) mathematics teachers—cognitive versus situated approaches

  • Gabriele Kaiser
  • Sigrid Blömeke
  • Johannes König
  • Andreas Busse
  • Martina Döhrmann
  • Jessica Hoth
Article

Abstract

Recent research on the professional competencies of mathematics teachers, which has been carried out during the last decade, is characterized by different theoretical approaches on the conceptualization and evaluation of teachers’ professional competencies, namely cognitive versus situated approaches. Building on the international IEA Teacher Education and Development Study in Mathematics (TEDS-M) and its follow-up study, TEDS-FU, the paper compares cognitive and situated approaches on professional competencies of teachers. In TEDS-FU, the cognitive oriented framework of TEDS-M has been enriched by a situated orientation including the novice-expert framework and the noticing concept as theoretical approaches on the analyses of classroom situations. Correspondingly, the evaluation instruments were extended by using video vignettes for assessing teachers’ perception, interpretation, and decision-making competencies in addition to cognitive oriented knowledge tests. The paper discusses the different kinds of theoretical frameworks and the consequences for the evaluation methods, the strengths, and weaknesses of both approaches. Furthermore, connecting the results of TEDS-FU with TEDS-M allows comprehensive insight into the structure and development of the professional competencies of mathematics teachers, the complex interplay between the different facets of teachers’ competencies, and the high relevance of teaching practice for the development of these competencies. The analyses show on the one hand that both approaches—cognitive and situated—are needed for a comprehensive description of teachers’ professional competencies. On the other hand, it is shown that both approaches can be integrated in a productive way. The paper closes with prospects on further studies coming even closer to the real classroom situation.

Keywords

Cognitive evaluation approaches Situated evaluation approaches Video-based assessment Professional competencies Noticing 

References

  1. Adler, J., Ball, D. L., Krainer, K., Lin, F.-L., & Novotna, J. (2005). Mirror images of an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60(3), 359–381.CrossRefGoogle Scholar
  2. Australian Council for Educational Research for the TEDS-M International Study Center. (2010a). Released items—Future teacher mathematics content knowledge (MCK) and mathematics pedagogical content knowledge (MPCK)—Primary. East Lansing, MI: IEA/MSU.Google Scholar
  3. Australian Council for Educational Research for the TEDS-M International Study Center. (2010b). Released items—Future teacher mathematics content knowledge (MCK) and mathematics pedagogical content knowledge (MPCK)—Secondary. East Lansing, MI: IEA/MSU.Google Scholar
  4. Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 83–104). London: Ablex.Google Scholar
  5. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  6. Blömeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries. ZDM – The International Journal on Mathematics Education, 44(3), 223–247.CrossRefGoogle Scholar
  7. Blömeke, S., Gustafsson, J.-E., & Shavelson, R. (2015). Beyond dichotomies—Competence viewed as a continuum. Zeitschrift für Psychologie, 223(1), 3–13.CrossRefGoogle Scholar
  8. Blömeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W. H. (Eds.). (2014). International perspectives on teacher knowledge, beliefs and opportunities to learn. TEDS-M results. Dordrecht: Springer.Google Scholar
  9. Blömeke, S., Kaiser, G., Döhrmann, M., Suhl, U., & Lehmann, R. (2010). Mathematisches und mathematikdidaktisches Wissen angehender Primarstufenlehrkräfte im internationalen Vergleich. In S. Blömeke, G. Kaiser, & R. Lehmann (Eds.), TEDS-M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Primarstufenlehrkräfte im internationalen Vergleich (pp. 195–251). Münster: Waxmann.Google Scholar
  10. Blömeke, S., Kaiser, G., Döhrmann, M., & Suhl, U. (2010). TEDS-M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich (pp. 197–238). Münster: Waxmann.Google Scholar
  11. Blömeke, S., Kaiser, G., & Döhrmann, M. (2011). Bedingungsfaktoren des fachbezogenen Kompetenzerwerbs von Lehrkräften. Zum Einfluss von Ausbildungs-, Persönlichkeits- und Kompositionsmerkmalen in der Mathematiklehrerausbildung für die Sekundarstufe I. Zeitschrift für Pädagogik, supplement No 57, 77–103.Google Scholar
  12. Blömeke, S., König, J., Busse, A., Suhl, U., Benthien, J., Döhrmann, M., et al. (2014). Von der Lehrerausbildung in den Beruf. Fachbezogenes Wissen als Voraussetzung für Wahrnehmung, Interpretation und Handeln im Unterricht. Zeitschrift für Erziehungswissenschaft, 17, 509–542.CrossRefGoogle Scholar
  13. Blömeke, S., Suhl, U., Kaiser, G., & Döhrmann, M. (2012). Family background, entry selectivity and opportunities to learn: What matters in primary teacher education? An international comparison of fifteen countries. Teaching and Teacher Education, 28, 44–55.CrossRefGoogle Scholar
  14. Bruckmaier, G., Krauss, S., Blum, W., & Leiss, D. (2016). Measuring mathematics teachers’ professional competence by using video clips (COACTIV video). ZDM Mathematics Education, 48(1–2), 111–124.CrossRefGoogle Scholar
  15. Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. C. (1988). Expert-novice differences in perceiving and processing visual information. Journal of Teacher Education, 39, 25–31.CrossRefGoogle Scholar
  16. Chi, M. T. H. (2011). Theoretical perspectives, methodological approaches, and trends in the study of expertise. In Y. Li & G. Kaiser (Eds.), Expertise in mathematics instruction: An international perspective (pp. 17–39). New York: Springer.CrossRefGoogle Scholar
  17. Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25.CrossRefGoogle Scholar
  18. Döhrmann, M., Kaiser, G., & Blömeke, S. (2012). The conceptualization of mathematics competencies in the international teacher education study TEDS-M. ZDM – The International Journal on Mathematics Education, 44(3), 325–340.CrossRefGoogle Scholar
  19. Erickson, F. (2011). On noticing teacher noticing. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing. seeing through teachers’ eyes (pp. 17–34). New York: Routledge.Google Scholar
  20. Fauskanger, J. (2015). Challenges in measuring teachers’ knowledge. Educational Studies in Mathematics, 90, 57–73.CrossRefGoogle Scholar
  21. Fennema, E., & Franke, L. M. (1992). Teachers’ knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147–164). Reston, VA: NCTM.Google Scholar
  22. Goodwin, C. (1994). Professional vision. American Anthropologist, 96(3), 606–633.CrossRefGoogle Scholar
  23. Kaiser, G., & Blömeke, S. (2013). Learning from the Eastern and the Western debate—The case of mathematics teacher education. ZDM – The International Journal on Mathematics Education, 45(1), 7–19.CrossRefGoogle Scholar
  24. Kaiser, G., Busse, A., Hoth, J., König, J., & Blömeke, S. (2015). About the complexities of video-based assessments: Theoretical and methodological approaches to overcoming shortcomings of research on teachers’ competence. International Journal of Science and Mathematics Education, 13(2), 369–387.CrossRefGoogle Scholar
  25. Kersting, N. B. (2008). Using video clips of mathematics classroom instruction as item prompts to measure teachers’ knowledge of teaching mathematics. Educational and Psychological Measurement, 68(5), 845–861.CrossRefGoogle Scholar
  26. Kersting, N. B., Givvin, K. B., Thompson, B., Santagata, R., & Stigler, J. (2012). Developing measures of usable knowledge: Teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49(3), 568–590.CrossRefGoogle Scholar
  27. Kersting, N. B., Sutton, T., Kalinec-Craig, C., Stoehr, K. J., Heshmati, S., Lozano, G., et al. (2016). Further exploration of the classroom video analysis (CVA) instrument as a measure of usable knowledge for teaching mathematics: Taking a knowledge system perspective. ZDM Mathematics Education, 48(1–2), 97–109.CrossRefGoogle Scholar
  28. Klein, F. (1932). Elementary mathematics from an advanced standpoint (Vol. 1). London: Macmillan (German original published 1908).Google Scholar
  29. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88.CrossRefGoogle Scholar
  30. König, J., Blömeke, S., Paine, L., Schmidt, W. H., & Hsieh, F.-J. (2011). General pedagogical knowledge of future middle school teachers: On the complex ecology of teacher education in the United States, Germany, and Taiwan. Journal of Teacher Education, 62(2), 188–201.CrossRefGoogle Scholar
  31. König, J., Blömeke, S., & Kaiser, G. (2015). Early career mathematics teachers’ general pedagogical knowledge and skills: Do teacher education, teaching experience, and working conditions make a difference? International Journal of Science and Mathematics Education, 13(2), 331–350.CrossRefGoogle Scholar
  32. Krainer, K., Goffree, F., & Berger, P. (1999). European research in mathematics education I.III—From a study of teaching practices to issues in teacher education. Osnabrück: Forschungsinstitut für Mathematikdidaktik.Google Scholar
  33. Krainer, K., & Llinares, S. (2010). Mathematics teacher education. In P. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (pp. 702–705). Oxford: Elsevier.CrossRefGoogle Scholar
  34. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project. New York: Springer.Google Scholar
  35. Leung, F. K. S., & Park, K. M. (2002). Competent students, competent teachers? International Journal of Educational Research, 37(2), 113–129.CrossRefGoogle Scholar
  36. Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah: Erlbaum.Google Scholar
  37. Mitchell, M. L., & Jolley, J. M. (2013). Research design explained. Belmont: Wadsworth.Google Scholar
  38. Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula, T. Buttery, & E. Guyton (Eds.), Handbook of research on teacher education (pp. 102–119). New York: Macmillan.Google Scholar
  39. Rowland, T., & Ruthven, K. (2011). Introduction: Mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 1–5). Dordrecht: Springer.CrossRefGoogle Scholar
  40. Sabers, D. S., Cushing, K. S., & Berliner, D. C. (1991). Differences among teachers in a task characterized by simultaneity, multidimensionality, and immediacy. American Educational Research Journal, 28, 63–88.Google Scholar
  41. Santagata, R., & Guarino, J. (2011). Using video to teach future teachers to learn from teaching. ZDM - The International Journal of Mathematics Education, 43(1), 133–145.CrossRefGoogle Scholar
  42. Santagata, R., & Yeh, C. (2016). The role of perception, interpretation, and decision making in the development of beginnings teachers’ competence. ZDM Mathematics Education, 48(1–2), 153–165.CrossRefGoogle Scholar
  43. Schlesinger, L., & Jentsch, A. (2016). Theoretical and methodological challenges in measuring instructional quality in mathematics education using classroom observations. ZDM Mathematics Education, 48(1–2), 29–40.CrossRefGoogle Scholar
  44. Schoenfeld, A. H. (2011). How we think: A theory of goal-oriented decision making and its educational applications. New York: Routledge.Google Scholar
  45. Schoenfeld, A. H., & Kilpatrick, J. (2008). Toward a theory of proficiency in teaching mathematics. In D. Tirosh & T. Wood (Eds.), International handbook of mathematics teacher education. Vol. 2: Tools and processes in mathematics teacher education (pp. 321–354). Rotterdam: Sense Publishers.Google Scholar
  46. Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (Eds.). (2011). Mathematics teacher noticing. Seeing through teachers’ eyes. New York: Routledge.Google Scholar
  47. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  48. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Research, 57, 1–22.CrossRefGoogle Scholar
  49. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher Education and Development Study in Mathematics (TEDS-M): Policy, practice, and readiness to teach primary and secondary mathematics. Conceptual Framework. East Lansing, MI: Michigan State University.Google Scholar
  50. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Rowley, G., Peck, R., et al. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries. Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). Amsterdam: IEA.Google Scholar
  51. Turner, F., & Rowland, T. (2011). The knowledge quartet as an organising framework for developing and deepening teachers’ mathematical knowledge. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 195–212). Dordrecht: Springer.CrossRefGoogle Scholar
  52. Van Es, E. (2011). A framework for learning to notice student thinking. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing. Seeing through teachers’ eyes (pp. 134–151). New York: Routledge.Google Scholar
  53. Van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571–596.Google Scholar
  54. Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–66). Göttingen: Hogrefe.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gabriele Kaiser
    • 1
  • Sigrid Blömeke
    • 2
  • Johannes König
    • 3
  • Andreas Busse
    • 1
  • Martina Döhrmann
    • 4
  • Jessica Hoth
    • 4
  1. 1.Faculty of EducationUniversity of HamburgHamburgGermany
  2. 2.Centre for Educational Measurement (CEMO)University of OsloOsloNorway
  3. 3.Faculty of Human SciencesUniversity of CologneCologneGermany
  4. 4.Institute for Mathematics and Science EducationUniversity of VechtaVechtaGermany

Personalised recommendations