Educational Studies in Mathematics

, Volume 94, Issue 1, pp 37–54 | Cite as

Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools

Article

Abstract

This paper reports the results of an international comparative study on the nature of proof to be taught in geometry. Proofs in French and Japanese lower secondary schools were explored by analyzing curricular documents: mathematics textbooks and national curricula. Analyses on the three aspects of proof—statement, proof, and theory—suggested by the notion of Mathematical Theorem showed differences in these aspects and also differences in the three functions of proof—justification, systematization, and communication—that are seemingly commonly performed in these countries. The results of analyses imply two major elements that form the nature of proof: (a) the nature of the geometrical theory that is chosen to teach and (b) the principal function of proof related to that theory. This paper suggests alternative approaches to teach proof and proving and shows that these approaches are deeply related to the way geometry is taught.

Keywords

Proof and proving Mathematical Theorem Functions of proof Textbooks Curriculum 

References

  1. Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving? ZDM, 40(3), 341–344.CrossRefGoogle Scholar
  2. Arsac, G. (1987). L’origine de la démonstration: Essai d’épistémologie didactique. Recherches en didactique des mathématiques, 8(3), 267–312.Google Scholar
  3. Artaud, M. (1998). Introduction à l’approche écologique du didactique – L’écologie des organisations mathématiques et didactiques. In M. Bailleul et al. (Eds.), Actes de la IXème école d’été de didactique des mathématiques (pp. 101–139). Caen: ARDM & IUFM.Google Scholar
  4. Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: An essay on the case of proof. ZDM, 40(3), 501–512.CrossRefGoogle Scholar
  5. Beaton, A. E., Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1996). Mathematics achievement in the middle school years: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Boston College.Google Scholar
  6. Bosch, M. (2015). Doing research within the anthropological theory of the didactic: The case of School algebra. In S. J. Cho (Ed.), Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 51–69). New York: Springer.Google Scholar
  7. Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–65.Google Scholar
  8. Cabassut, R. (2005). Démonstration, raisonnement et validation dans l’enseignement secondaire des mathématiques en France et en Allemagne. Thèse: Université Paris 7.Google Scholar
  9. Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2009). Mathématiques Triangle 6 e. Paris: Hatier.Google Scholar
  10. Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2010). Mathématiques Triangle 5 e. Paris: Hatier.Google Scholar
  11. Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2011). Mathématiques Triangle 4 e. Paris: Hatier.Google Scholar
  12. Chapiron, G., Mante, M., Mulet-Marquis, R., & Pérotin, C. (2012). Mathématiques Triangle 3 e. Paris: Hatier.Google Scholar
  13. Chevallard, Y. (1991). La transposition didactique (2nd ed.). Grenoble: La Pensée Sauvage.Google Scholar
  14. Chevallard, Y. (1992). A theoretical approach to curricula. Journal für Mathematikdidaktik, 13(2/3), 215–230.CrossRefGoogle Scholar
  15. Chevallard, Y. (1994). Les processus de transposition didactique et leur théorisation. In G. Arsac et al. (Eds.), La transposition didactique à l’épreuve (pp. 135–180). Grenoble: La Pensée Sauvage.Google Scholar
  16. Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.Google Scholar
  17. De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24.Google Scholar
  18. Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22(3), 233–261.CrossRefGoogle Scholar
  19. Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413–435.CrossRefGoogle Scholar
  20. Fujii, T., et al. (2012a). Atarashii Suugaku 1. [New Mathematics 1] Tokyo: Tokyo Shoseki.Google Scholar
  21. Fujii, T., et al. (2012b). Atarashii Suugaku 2. [New Mathematics 2] Tokyo: Tokyo Shoseki.Google Scholar
  22. Fujii, T., et al. (2012c). Atarashii Suugaku 3. [New Mathematics 3] Tokyo: Tokyo Shoseki.Google Scholar
  23. Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. International Journal of Educational Research, 64, 81–91.CrossRefGoogle Scholar
  24. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1–2), 5–23.CrossRefGoogle Scholar
  25. Hanna, G., & de Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study. New York: Springer.Google Scholar
  26. Hanna, G., Jahnke, H. N., & Pulte, H. (Eds.). (2010). Explanation and proof in mathematics: Philosophical and educational perspectives. New York: Springer.Google Scholar
  27. Herbst, P. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49(3), 283–312.CrossRefGoogle Scholar
  28. Howson, G. (1995). Mathematics textbooks: A comparative study of Grade 8 texts. TIMSS monograph no. 3. Vancouver: Pacific Educational Press.Google Scholar
  29. IGEN. (1998). Le manuel scolaire. Paris: La documentation française. Retrieved from http://www.ladocumentationfrancaise.fr/var/storage/rapports-publics/994000490/0000.pdfGoogle Scholar
  30. Jones, K., & Fujita, T. (2013). Interpretations of National Curricula: The case of geometry in textbooks from England and Japan. ZDM, 45(5), 671–683.CrossRefGoogle Scholar
  31. Knipping, C. (2003). Processus de preuve dans la pratique de l’enseignement - Analyses comparatives des classes allemandes et françaises en 4ème. Bulletin de l’APMEP, 449, 784–794.Google Scholar
  32. Mariotti, M. A., Bartolini, M, Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry theorems in contexts: From history and epistemology to cognition. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp.180-195). Lathi: PME.Google Scholar
  33. MEN. (2008). Programmes du collège: Programmes de l’enseignement de mathématiques. Bulletin Officiel Spécial, 6, 28 août.Google Scholar
  34. MEXT. (2008). Chuugakko gakushuu shidou youryou kaisetsu suugaku-hen [Junior high school teaching guide for Japanese course of study: mathematics]. Tokyo: Kyouiku Shuppan.Google Scholar
  35. Miyakawa, T. (2012). Ecology of proof in French lower secondary school geometry: A textbook analysis. Journal of Japan Society of Mathematics Education, 94(9), 2–11. (In Japanese).Google Scholar
  36. Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: A way to understand teaching and learning cultures. ZDM, 33(5), 158–175.Google Scholar
  37. Peterson, B. E. (2008). A look at Japanese junior high school mathematics textbooks. In Z. Usiskin & E. Willmore (Eds.), Mathematics curriculum in Pacific Rim countries—China, Japan, Korea, and Singapore (pp. 209–231). Charlotte, NC: Information Age.Google Scholar
  38. Reid, D. A., & Knipping, C. (2010). Proof in mathematics education. Rotterdam: Sense Publishers.Google Scholar
  39. Sésamath (2010). Le Manuel Sésamath 5 e. Génération 5. Retrieved June 17 2015 from http://manuel.sesamath.net/
  40. Sésamath (2011). Le Manuel Sésamath 4 e. Génération 5. Retrieved June 17 2015 from http://manuel.sesamath.net/
  41. Yoshikawa, S. (2008). Education ministry perspective on mathematics curriculum in Japan. In Z. Usiskin & E. Willmore (Eds.), Mathematics curriculum in Pacific Rim countries—China, Japan, Korea, and Singapore (pp. 9–22). Charlotte, NC: Information Age.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsJoetsu University of EducationJoetsuJapan

Personalised recommendations