Educational Studies in Mathematics

, Volume 93, Issue 1, pp 35–50

A dilemma that underlies an existence proof in geometry

  • Carmen Samper
  • Patricia Perry
  • Leonor Camargo
  • Adalira Sáenz-Ludlow
  • Óscar Molina
Article

Abstract

Proving an existence theorem is less intuitive than proving other theorems. This article presents a semiotic analysis of significant fragments of classroom meaning-making which took place during the class-session in which the existence of the midpoint of a line-segment was proven. The purpose of the analysis is twofold. First follow the evolution of students’ conceptualization when constructing a geometric object that has to satisfy two conditions to guarantee its existence within the Euclidean geometric system. An object must be created satisfying one condition that should lead to the fulfillment of the other. Since the construction is not intuitive it generates a dilemma as to which condition can be validly assigned initially. Usually, the students’ spontaneous procedure is to force the conditions on a randomly chosen object. Thus, the second goal is to highlight the need for the teacher’s mediation so the students understand the strategy to prove existence theorems. In the analysis, we use a model of conceptualization and interpretation based on the Peircean triadic SIGN.

Keywords

Existence proofs Students’ procedure to prove existence theorems Meaning-making Teacher semiotic-mediation 

References

  1. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15, 225–253.CrossRefGoogle Scholar
  2. Ben-Zvi, D., & Sfard, A. (2007). Ariadne’s thread, Daedalus’ wings, and the learner’s autonomy. Education & Didactique, 1(3), 117–134.CrossRefGoogle Scholar
  3. Birkhoff, G. (1932). A set of postulates for plane geometry, based on scale and protractor. Annals of Mathematics, 33(2), 329–345. Retrieved from in http://www.jstor.org/stable/1968336.
  4. de Guzmán, M., Hodgson, B., Robert, A., & Villani, V. (1998). Difficulties in the passage from secondary to tertiary education. Documenta Mathematica (extra volume). Proceedings of the International Congress of Mathematicians (Berlin), 3, 747–762.Google Scholar
  5. Lannin, J., Barker, D., & Townsend, B. (2007). How students view the general nature of their errors. Educational Studies in Mathematics, 66, 43–59.CrossRefGoogle Scholar
  6. Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher. ZDM, 41(4), 427–440.CrossRefGoogle Scholar
  7. Mejía-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3–18.CrossRefGoogle Scholar
  8. Perry, P., Camargo, L., Samper, C., & Rojas, C. (2006). Actividad demostrativa en la formación inicial del profesor de matemáticas [Proving in pre-service mathematics teachers’ training]. Bogotá: Fondo Editorial de la Universidad Pedagógica Nacional.Google Scholar
  9. Perry, P., Samper, C., Camargo, L., & Molina, Ó. (2013). Innovación en un aula de geometría de nivel universitario [Innovation in a university geometry classroom]. In C. Samper & Ó. Molina. Geometría Plana: un espacio de aprendizaje [Plane Geometry: A setting for learning]. Bogotá: Fondo Editorial de la Universidad Pedagógica Nacional.Google Scholar
  10. Perry, P., Camargo, L., Samper, C., Sáenz-Ludlow, A., & Molina, Ó. (2014). Teacher semiotic mediation and student meaning-making: A Peircean perspective. In P. Liljedahl, S. Oesterle, C. Nicol, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 4, pp. 409–416). Vancouver: PME.Google Scholar
  11. Radford, L., Schubring, G., & Seeger, F. (2011). Signifying and meaning-making in mathematical thinking, teaching, and learning. Educational Studies in Mathematics, 77(2–3), 149–156.CrossRefGoogle Scholar
  12. Sáenz-Ludlow, A., & Zellweger, S. (2012). The teaching-learning of mathematics as a double process of intra- and inter-interpretation: A Peircean perspective. In Pre-proceedings of the 12th ICME. Retrieved from http://www.icme12.org/data/ICME12_Pre-proceedings.zip.
  13. Samper, C., Camargo, L., Molina, Ó., & Perry, P. (2013). Instrumented activity and semiotic mediation: Two frames to describe the conjecture construction process as curricular organizer. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 145–152). Kiel: PME.Google Scholar
  14. Selden, A., & Selden, J. (2011). Mathematical and non-mathematical university students’ proving difficulties. In L. R. Wiest & T. D. Lamburg (Eds.), Proceedings of the 33rd Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 675–683). Reno: University of Nevada.Google Scholar
  15. Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic knowledge. Educational Studies in Mathematics, 48(1), 101–119.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Carmen Samper
    • 1
  • Patricia Perry
    • 2
  • Leonor Camargo
    • 3
  • Adalira Sáenz-Ludlow
    • 4
  • Óscar Molina
    • 5
  1. 1.Universidad Pedagógica NacionalBogotáColombia
  2. 2.Universidad Pedagógica NacionalBogotáColombia
  3. 3.Universidad Pedagógica NacionalBogotáColombia
  4. 4.University of North Carolina at CharlotteKannapolisUSA
  5. 5.Universidad Pedagógica NacionalBogotáColombia

Personalised recommendations