Advertisement

Educational Studies in Mathematics

, Volume 92, Issue 2, pp 179–192 | Cite as

Do explicit number names accelerate pre-kindergarteners’ numeracy and place value acquisition?

  • Suzanne D. Magargee
  • Judith E. Beauford
Article

Abstract

The purpose of this longitudinal study is to investigate whether an early childhood intervention using an explicit and transparent number naming system will have a lasting benefit to English and Spanish speaking children in their mathematics achievement related to number sense by accelerating their acquisition of concepts of numeracy and place value recognition. Statistical analysis of the results of the Stanford Achievement Test administered to school children in grades 1 through 5 at a school in Texas (USA) over a 6-year period of time showed consistent differences between those children who had participated in the intervention program by learning to count using explicit numbers names in Pre-Kindergarten and those who had not participated in the program. The advantages of this study were most apparent in children in the fourth grade, 6 years after their Pre-Kindergarten experience with explicit number names, particularly with those who had 2 years of experience with explicit number names.

Keywords

Number names Numeracy Language Preschool Mathematics 

Notes

Acknowledgments

This research was partially funded by the University of the Incarnate Word School of Graduate Studies and Research.

References

  1. Adams, R., & Wu, M. (Eds.). (2003). Programme for international student assessment (PISA): PISA 2000 technical report. Paris: OECD Publishing. doi: 10.1787/9789264199521-en Google Scholar
  2. Alsawaie, O. N. (2004). Language influence on children’s cognitive number representation. School Science and Mathematics, 104(3), 105–111. doi: 10.1111/j.1949-8594.2004.tb17990.x CrossRefGoogle Scholar
  3. Beauford, J. E. (2005). Connections between names of numbers and student performance in mathematics. In D. F. Berlin & A. L. White (Eds.), Collaboration for the global improvement of science and mathematics education. Columbus: The International Consortium for Research in Science and Mathematics Education.Google Scholar
  4. Beauford, J. E., & Browning, S. T. (2007). The effects of the Use of explicit number names on mathematical understanding and performance mathematics education in a global community. Charlotte: Ninth International Conference.Google Scholar
  5. Bright Education. (2015). Stanford Achievement Test (9th Ed.) (SAT-9) [website]. Retrieved from http://brighted.funeducation.com/Practice/Stanford-SAT-9
  6. Browning, S. (2008). Language and number values: The influence of the explicitness of number names on childrens’ understanding of place value (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses http://search.proquest.com/docview/304835322?accountid=7139
  7. Browning, S. T., & Beauford, J. E. (2011). Language and number values: The influence of the explicitness of number names on children’s understanding of place value. Investigations in Mathematical Learning, 4(2), 1–24.Google Scholar
  8. Bruce, R. A., & Threlfall, J. (2004). One, two, three and counting. Educational Studies in Mathematics, 55(1), 3–26. doi: 10.1023/b:educ.0000017676.79430.dc CrossRefGoogle Scholar
  9. Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1), 32–44. doi: 10.1016/j.cognition.2010.09.005 CrossRefGoogle Scholar
  10. Campbell, J., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology, 130(2), 299–315. doi: 10.1037/0096-3445.130.2.299 CrossRefGoogle Scholar
  11. Chen, Z. Y., Cowell, P., Varley, R., & Wang, Y. C. (2009). A cross-language study of verbal and visuospatial working memory span. Journal of Clinical and Experimental Neuropsychology, 31(4), 385–391.CrossRefGoogle Scholar
  12. Cheng, Z., & Chan, L. K. S. (2005). Chinese number naming advantages? Analyses of Chinese pre-schoolers’ computational strategies and errors. International Journal of Early Years Education, 13(2), 179–192. doi: 10.1080/09669760500171279
  13. Cheng, L., Li, L., Kirby, J., Qiang, H., & Wade-Woolley, L. (2010). English language immersion and students’ academic achievement in English, Chinese and mathematics. Evaluation & Research in Education, 23(3), 151–169.Google Scholar
  14. Cotter, J. (2000). Using language and visualization to teach place value. Teaching Children Mathematics, 7(2), 108–114.Google Scholar
  15. De Smedt, B., Noel, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55. doi: 10.1016/j.tine.2013.06.001
  16. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224. doi: 10.1016/j.conb.2004.03.008 CrossRefGoogle Scholar
  17. Dowker, A., Bala, S., & Lloyd, D. (2008). Linguistic influences on mathematical development: How important is the transparency of the counting system? Philosophical Psychology, 21(4), 523–538.CrossRefGoogle Scholar
  18. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. doi: 10.1016/j.tics.2004.05.002 CrossRefGoogle Scholar
  19. Fuson, K. C., Grandau, L., & Sugiyama, P. A. (2001). Achievable numerical understanding for all young children. Teaching Children Mathematics, 7(9), 522–526.Google Scholar
  20. Ginsburg, H. P., Choi, Y. E., Lopez, L. S., Netley, R., & Chao-Yuan, C. (1997). Happy birthday to you: Early mathematical thinking of Asian, South American, and U.S. children. In. T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 163–207). East Sussex, UK: Psychology PressGoogle Scholar
  21. Habegger, L. (2010). Number concept and rhythmic response in early childhood. Music Education Research, 12(3), 269–280. doi: 10.1080/14613808.2010.504810 CrossRefGoogle Scholar
  22. Herrera, A., & Macizo, P. (2010). The production of symbolic and non-symbolic numerals. Procedia Social and Behavioral Sciences, 5, 926–934. doi: 10.1016/j.sbspro.2010.07.212 CrossRefGoogle Scholar
  23. Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and non-symbolic numerical magnitude: An fMRI study. NeuroImage, 49, 1006–1017. doi: 10.1016/j.neuroimage.2009.07.071 CrossRefGoogle Scholar
  24. Imbo, I., & LeFevre, J. (2009). Cultural differences in complex addition: Efficient Chinese versus adaptive Belgians and Canadians. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1465–1476.Google Scholar
  25. Jones, G. A., Thornton, C. A., Putt, I. J., Hill, K. M., Mogill, A. T., Rich, B. S., et al. (1996). Multidigit number sense: A framework for instruction and assessment. Journal for Research in Mathematics Education, 27, 310–336. doi: 10.2307/749367 CrossRefGoogle Scholar
  26. Miller, K., Major, S., Shu, H., & Zhang, H. (2000). Ordinal knowledge: Number names and number concepts in Chinese and English. Canadian Journal of Experimental Psychology, 54(2), 129–139.Google Scholar
  27. Miura, I. T. (1987). Mathematics achievement as a function of language. Journal of Educational Psychology, 79(1), 79–82. doi: 10.1037/0022-0663.79.1.79 CrossRefGoogle Scholar
  28. Miura, I. T. (2001). The influence of language on mathematical representations. In A. A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics: 2001 yearbook of the national council of teachers of mathematics (pp. 53–62). Reston: National Council of Teachers of Mathematics.Google Scholar
  29. Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H. C. (2011). Early place-value understanding as a precursor for later arithmetic performance – A longitudinal study on numerical development. Research in Developmental Studies, 32, 1837–1851. doi: 10.1016/j.ridd.2011.03.012 Google Scholar
  30. Morin, J. E., & Franks, D. J. (2010). Why do some children have difficulty learning mathematics? Looking at language for answers. Preventing School Failure, 54(2), 111–118. doi: 10.1080/10459880903217861
  31. Mullis, I. V., Martin, M. O., Gonzalez, E. J., O’Connor, K. M., Chrostowski, S. J., Gregory, K. D., … & Smith, T. A. (2001). Mathematics benchmarking report: TIMSS 1999—Eighth grade. Chestnut Hill, MA: International Study Center. Retrieved from http://timssandpirls.bc.edu/timss1999b/mathbench_report/t99b_math_report.html
  32. Ng, S., & Rao, N. (2010). Chinese number words, culture, and mathematics learning. Review of Educational Research, 80(2), 180–206. doi: 10.3102/0034654310364764 CrossRefGoogle Scholar
  33. Noren, E. (2015). Agency and positioning in a multilingual mathematics classroom. Educational Studies in Mathematics, 89(2), 167–184. doi: 10.1007/s10649-015-9603-5 CrossRefGoogle Scholar
  34. Pearson Education. (2015). Stanford Achievement Test Series (10th Ed.) [website]. Retrieved from http://www.pearsonassessments.com/learningassessments/products/100000415/stanford-achievement-test-series-tenth-edition.html
  35. Pixner, S., Moeller, K., Hermanova, V., Nuerk, H. C., & Kaufmann, L. (2011). Whorf reloaded: Language effects on nonverbal number processing in first grade – A trilingual study. Journal of Experimental Psychology, 108, 371–382.Google Scholar
  36. Sousa, D. (2008). How the brain learns mathematics. Thousand Oaks: Corwin Press.Google Scholar
  37. Texas Education Agency. (2005). Professional development appraisal system: Teacher manual. Austin: Texas. Retrieved from http://www4.esc13.net/uploads/pdas/docs/PDAS_Teacher_Manual.pdf
  38. Texas Education Agency. (2008). Texas prekindergarten guidelines. Retrieved from http://tea.texas.gov/index2.aspx?id=2147495508
  39. Tsamir, P., Tirosh, D., Tabach, M., & Levenson, E. (2010). Multiple solution methods and multiple outcomes - Is it a task for kindergarten children? Educational Studies in Mathematics, 73(3), 217–231. doi: 10.1007/s10649-009-9215-z CrossRefGoogle Scholar
  40. Van Luit, J., & Van der Molen, M. (2011). The effectiveness of Korean number naming on insight into numbers in Dutch students with mild intellectual disabilities. Research in Developmental Disabilities, 32(2011), 1941–194. doi: 10.1016/j.ridd.2011.03.028 CrossRefGoogle Scholar
  41. Van Oers, B. (2001). Educational forms of initiation in mathematical culture. Educational Studies in Mathematics, 46, 59–85. doi: 10.1023/a:1014031507535 CrossRefGoogle Scholar
  42. Wang, J., Lin, E., Tanase, M., & Sas, M. (2008). Revisiting the influence of numerical language characteristics on mathematical achievement: Comparison among China, Romania, and U.S. International Electronic Journal of Mathematics Education, 3(1), 24–46.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Dreeben School of EducationUniversity of the Incarnate WordSan AntonioUSA

Personalised recommendations