# An intentionality interpretation of meaning in mathematics education

- 637 Downloads
- 1 Citations

## Abstract

The referential theory of meaning as well as the use-oriented theory of meaning have huge impacts on the discussion of meaning in mathematics education. Here, I present a third theory in terms of an intentionality interpretation of meaning, which provides an alternative departure for the discussion of meaning in mathematics education. The importance of intentionality for understanding human phenomena was emphasised by both Brentano and Husserl. They associated intentionality with a pure stream of consciousness, which constitutes an a priori to any human experience. I agree that the notion of intentionality is important; however, I find it crucial to provide a paradigmatic uprooting of this notion and to consider it as being structured by economic, political, cultural, and discursive factors. Such real-life intentionalities constitute the basis for an intentionality interpretation of meaning. I explore this interpretation with respect to mathematics education by addressing imaginations, possibilities, obstructions, hopes, fears, stereotypes and preconceptions. I relate meaning in mathematics education to far away horizons of students’ life worlds, to negotiations, to political issues, to diversity and to instrumentalism.

## Keywords

Intentionalities Real-life intentionalities Meaning in mathematics education Intentionality interpretation of meaning Politics of meaning## Notes

### Acknowledgments

I want to thank Denival Biotto Filho, Peter Gates, Renato Marcone, Raquel Milani, Miriam Penteado, and Guilherme Gomes da Silva for their many helpful comments and suggestions.

## References

- Atweh, B., Graven, M., Secada, W., & Valero, P. (Eds.). (2011).
*Mapping equity and quality in mathematics education*. New York: Springer.Google Scholar - Austin, J. L. (1962).
*How to do things with words*. Oxford: Oxford University Press.Google Scholar - Austin, J. L. (1970).
*Philosophical papers*(2nd ed.). (J. O. Urmson & G. J. Warnock, Eds.). Oxford: Oxford University Press.Google Scholar - Ayer, A. (Ed.). (1959).
*Logical positivism*. New York: The Free Press.Google Scholar - Bartell, T. G. (2012). Is this teaching mathematics for social justice? Teachers’ conceptions of mathematics classrooms for social justice. In A. A. Wager & D. W. Stinson (Eds.),
*Teaching mathematics for social justice: Conversations with mathematics educators*(pp. 113–125). USA: NCTM, National Council of Mathematics Teachers.Google Scholar - Biehler, R. (2005). Reconstruction of meaning as a didactical task: The concept of function as an example. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 61–81). New York: Springer.CrossRefGoogle Scholar - Biotto Filho, D. (2015).
*Quem não sonhou em ser um jogador de futebol? Trabalho com projetos para reelaborar foregrounds*(Unpublished doctoral dissertation). Universidade Estadual Paulista Júlio de Mesquita Filho, Teses, Rio Claro.Google Scholar - Brand, M. (1984).
*Intending and acting*. Cambridge: MIT Press.Google Scholar - Brentano, F. (1977).
*The psychology of Aristotle: In particular his doctrine of the active intellect*(R. George, Trans.). Berkeley: University of California Press.Google Scholar - Brentano, F. (1995).
*Psychology from an empirical standpoint*(A. C. Rancurello, D. B. Terrell, & L. L. McAlister, Eds.). London: Routledge.Google Scholar - Bussi, M. G. B. (2005). The meaning of conics: Historical and didactical dimensions. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 39–60). New York: Springer.CrossRefGoogle Scholar - Carnap, R. (1932). The elimination of metaphysics through logical analysis of language. In A. Ayer (Ed.),
*Logical positivism*(pp. 60–81). New York: The Free Press.Google Scholar - Carnap, R. (1947).
*Meaning and necessity: A study in semantics and modal logic*. Chicago: University of Chicago Press.Google Scholar - Clements, M. A. K., Bishop, A., Keitel, C., Kilpatrick, J., & Leung, F. K. S. (Eds.). (2013).
*Third international handbook of mathematics education*. New York: Springer.Google Scholar - Dienes, Z. P. (1960).
*Building up mathematics*. London: Hutchinson.Google Scholar - Dienes, Z. P. (1963).
*An experimental study of mathematics-learning*. London: Hutchinson.Google Scholar - Dienes, Z. P. (1964).
*The power of mathematics*. London: Hutchinson.Google Scholar - Dreyfus, T., & Hillel, J. (1998). Reconstruction of meanings for function approximation.
*International Journal of Computers for Mathematical Learning, 3*(2), 93–112.CrossRefGoogle Scholar - Dummett, M. (1981).
*The interpretation of Frege’s philosophy*. Cambridge: Harvard University Press.Google Scholar - Forgasz, H., & Rivera, F. (Eds.). (2012).
*Towards equity in mathematics education: Gender, culture, and diversity*. New York: Springer.Google Scholar - Frege, G. (1892). On sense and reference. In P. Geach & M. Black (Eds.),
*Translations from the philosophical writings of Gottlob Frege*(pp. 56–78). Oxford: Basil Blackwell.Google Scholar - Grice, P. (1989). Meaning.
*Studies in the way of words*(pp. 213–223). Cambridge, MA: Harvard University Press.Google Scholar - Gutstein, E. (2006).
*Reading and writing the world with mathematics: Toward a pedagogy for social justice*. New York and London: Routledge.Google Scholar - Gutstein, E. (2012). Reflections on teaching and learning mathematics for social justice in urban schools. In A. A. Wager & D. W. Stinson (Eds.),
*Teaching mathematics for social justice: Conversations with mathematics educators*(pp. 63–78). USA: NCTM, National Council of Mathematics Teachers.Google Scholar - Hardy, G. H. (1967).
*A mathematician’s apology.*Cambridge: Cambridge University Press.Google Scholar - Hempel, C. G. (1959). The empiricist criterion of meaning. In A. Ayer (Ed.),
*Logical positivism*(pp. 108–129). New York: The Free Press.Google Scholar - Hillel, J., & Dreyfus, T. (2005). What’s a best fit? Construction of meaning in a linear algebra session. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 181–203). New York: Springer.CrossRefGoogle Scholar - Howson, G. (2005). “Meaning” and school mathematics. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 17–38). New York: Springer.CrossRefGoogle Scholar - Hoyles, C. (2005). Making mathematics and sharing mathematics: Two paths to co-constructing meaning. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 139–158). New York: Springer.CrossRefGoogle Scholar - Kaiser, G. (2008). Meaning is mathematics education: Reflections from various perspectives. Retrieved from https://www.unige.ch/math/EnsMath/Rome2008/WG5/Papers/KAIS.pdf
- Kilpatrick, J., Hoyles, C., Skovsmose, O., & Valero, P. (Eds.). (2005).
*Meaning in mathematics education*. New York: Springer.Google Scholar - Knijnik, G. (2012). Differentially positioned language games: Ethnomathematics from a philosophical perspective.
*Educational Studies in Mathematics, 80*, 87–100.CrossRefGoogle Scholar - Kripke, S. (1972).
*Naming and necessity*. Cambridge: Harvard University Press.CrossRefGoogle Scholar - Kvale, S. (1996).
*InterViews: An introduction to qualitative research interviewing*. Thousands Oaks: Sage Publications.Google Scholar - Laborde, C. (2005). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 159–179). New York: Springer.CrossRefGoogle Scholar - Lerman, S. (Ed.). (2014).
*Encyclopedia of mathematics education*. New York: Springer.Google Scholar - Mele, A. R. (2010). Intention. In T. O’Connor & C. Sandis (Eds.),
*A companion to the philosophy of action*(pp. 108–113). Chichester: Wiley-Blackwell.CrossRefGoogle Scholar - Mellin-Olsen, S. (1981). Instrumentalism as an educational concept.
*Educational Studies in Mathematics, 12*, 351–367.CrossRefGoogle Scholar - Montague, R. (1974).
*Formal philosophy: The selected papers of Richard Montague*(R. Thomason, Ed.). New Haven: Yale University Press.Google Scholar - Moses, R. B., & Cobb, C. E. (2001).
*Radical equations: Civil rights from Mississippi to the algebra project*. Boston: Beacon.Google Scholar - O’Connor, T., & Sandis, C. (Eds.). (2010).
*A companion to the philosophy of action*. Chichester: Wiley-Blackwell.Google Scholar - Ormell, C. P. (1991). How ordinary meaning underpins the meaning of mathematics.
*For the Learning of Mathematics, 11*, 25–30.Google Scholar - Otte, M. (2005). Meaning and mathematics. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.),
*Meaning in mathematics education*(pp. 231–260). New York: Springer.CrossRefGoogle Scholar - Otte, M. (2006). Mathematical epistemology from a Peircean semiotic point of view.
*Educational Studies in Mathematics, 61*, 11–38.CrossRefGoogle Scholar - Papy, G. (1969).
*Modern mathematics*(Vol. 1). London: Macmillan Publication Company.Google Scholar - Peterson, B. (2012). Numbers count: Mathematics across the curriculum. In A. A. Wager & D. W. Stinson (Eds.),
*Teaching mathematics for social justice: Conversations with mathematics educators*(pp. 147–159). USA: NCTM, National Council of Mathematics Teachers.Google Scholar - Quine, W. V. O. (1960).
*Word and object*. Cambridge: MIT Press.Google Scholar - Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings.
*Educational Studies in Mathematics, 70*(2), 111–126.CrossRefGoogle Scholar - Reichenbach, H. (1966).
*The rise of scientific philosophy*. Berkeley: University of California Press.Google Scholar - Reid, J. (2001). Dilthey’s epistemology of the
*Geisteswissenschaften*: Between*Lebensphilosophie*and*Wissenschaftsteorie. Journal of the History of Philosophy, 39*(3), 407–436.CrossRefGoogle Scholar - Sartre, J.-P. (1989).
*Being and nothingness*(H. E. Barnes, Trans.). London: Routledge.Google Scholar - Schiffer, S. (1972).
*Meaning*. Oxford: Oxford University Press.Google Scholar - Searle, J. (1983).
*Intentionality: An essay in the philosophy of mind*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Skinner, B. F. (1957).
*Verbal behaviour*. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar - Skovsmose, O. (1994).
*Towards a philosophy of critical mathematics education*. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar - Skovsmose, O. (2014).
*Foregrounds: Opaque stories about learning*. Rotterdam: Sense Publishers.CrossRefGoogle Scholar - Skovsmose, O., & Penteado, M. G. (2015). Mathematics education and democracy: An open landscape of tensions, uncertainties, and challenges. In L. D. English & D. Kirshner (Eds.),
*Handbook of international research in mathematics education*(3rd ed., pp. 359–373). New York: Routledge.Google Scholar - Skovsmose, O., Alrø, H., Valero, P., Silvério, A. P., & Scandiuzzi, P. P. (2008). “Before you divide you have to add”: Inter-viewing Indian students’ foregrounds. In B. Sriraman (Ed.),
*International perspectives on social justice in mathematics education. The Montana mathematics enthusiast monograph 1*(pp. 209–230). Charlotte: Information Age Publishing, Inc.Google Scholar - Sriraman, B., & English, L. (Eds.). (2010).
*Theories of mathematics education: Seeking new frontiers*. New York: Springer.Google Scholar - Steinbring, H. (1997). Epistemological investigation of classroom interaction in elementary mathematics teaching.
*Educational Studies in Mathematics, 32*, 49–92.CrossRefGoogle Scholar - Tarski, A. (1936). The semantic conception of truth and the foundations of semantics.
*Philosophy and Phenomenological Research, 4*(3), 341–376.CrossRefGoogle Scholar - Thompson, P. W. (2013). In the absence of meaning. In K. Leatham (Ed.),
*Vital directions for research in mathematics education*(pp. 57–93). New York: Springer.CrossRefGoogle Scholar - Torfing, J. (1999).
*New theories of discourse: Laclau, Mouffe and Žižek*. Oxford: Wiley-Blackwell.Google Scholar - Voigt, J. (1996). Negations of mathematical meaning in classroom processes: Social interaction and learning mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Golding, & B. Greer (Eds.),
*Theories of mathematical learning*(pp. 21–50). Mahwah: Lawrence Erlbaum.Google Scholar - Watson, J. B. (1913). Psychology as the behaviourists view it.
*Psychological Bulletin, 31*(10), 755–776.Google Scholar - Watson, J. B. (1914).
*Behaviour: An introduction to comparative psychology*. New York: Holt.CrossRefGoogle Scholar - Watson, J. B. (1919).
*Psychology for the stand-point of a behaviourist*. Philadelphia: Lippincott.CrossRefGoogle Scholar - Wittgenstein, L. (1922).
*Tractatus logico-philosophicus*(C. K. Ogden, Trans.). London: Routledge.Google Scholar - Wittgenstein, L. (1958).
*Philosophical investigations*(2nd. ed.). (G. E. M. Anscombe, Trans.). Oxford: Basil Blackwell.Google Scholar