Skip to main content
Log in

Natural language as a tool for analyzing the proving process: the case of plane geometry proof

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

In the field of human cognition, language plays a special role that is connected directly to thinking and mental development (e.g., Vygotsky, 1938). Thanks to “verbal thought”, language allows humans to go beyond the limits of immediately perceived information, to form concepts and solve complex problems (Luria, 1975). So, it appears language can be studied as a cognitive process (Chomsky, 1975). In this investigation, I study language as a means for making the cognitive process explicit. In particular, I analyze the role of the verbalization produced by pairs of students solving a plane geometry problem. The basic idea of my research is that, during the resolution process of a plane geometry problem, natural language can play roles beyond that of communication: Natural language can be seen as a tool for supporting students’ cognitive processes (Robotti, 2008), and, at the same time, it can also be seen as a researchers’ tool which allows us to shed light on the evolution of students’ cognitive processes. With regard to language as researchers’ tool, I show how natural language (in our case, students’ verbalization during resolution of a plane geometry problem) can be used by the researcher to make explicit, to study, and to describe the development of the students’ cognitive processes during the resolution process. To this end, I present a model I have developed that allows us to identify, in students’ verbalization, different phases of their cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. “l’ensemble théoriquement infini de toutes les entités en dehors de la langue…. Par essence, l’activité langagière s’articule à l’extralangage [en définissant] des espaces dotés de deux type de pertinence: la pertinence référentielle, c’est-à-dire la capacité à devenir un " contenu représenté " de l’activité langagière, et la pertinence contextuelle, c’est-à-dire la capacité de contrôler ou gérer le déroulement même de l’activité langagière.” (p. 26)

  2. “le degré de fiabilité que possède ce qui est énoncé dans la proposition : le contenu d’une proposition apparaît évident ou certain ou seulement vraisemblable, ou plausible, ou simplement possible, ou impossible ou encore absurde…” (Duval 1995a, b p. 21)

  3. “est le fait que la proposition énoncée est soit vraie soit fausse. A la différence de la valeur épistémique, la valeur logique d’une proposition ne dépend pas de la seule compréhension de son contenu mais elle résulte de procédures spécifiques de vérification ou preuve” (Duval 1995a, b p. 220).

References

  • Bartolini-Bussi, M. (1998a). Verbal interaction in mathematics classrooms: A Vygotskian analysis. In H. Steinbring, M. G. Bartolini-Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 65–84). Reston, VA: NCTM.

    Google Scholar 

  • Bartolini-Bussi, B. (1998b). Joint activity in the mathematics classroom: A Vygotskian analysis. In F. Seeger, J. Voigt, & U. Waschesho (Eds.), The culture of the mathematics classroom (pp. 13–49). U. P: Cambridge.

    Chapter  Google Scholar 

  • Bronckart J.P. (1985). Le fonctionnement des discours. [The operation of the speeches] Paris: Delachaux et Niestlé.

  • Chomsky, N. (1975). Reflections on language. New York: Pantheon.

    Google Scholar 

  • Duval R. (1995a). Sémiosis et pensée humaine. [Semiosis and human thought] Bern: Peter Lang.

  • Duval, R. (1995b). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education. Berlin: Springer.

    Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87(5), 215–252.

    Article  Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.

    Google Scholar 

  • Laborde, C. (1982). Langue naturelle et écriture symbolique. [Natural language and symbolic writing] Thèse de Doctorat. Grenoble: Université Scientifique et Médicale Institut National Polytechnique de Grenoble

  • Laborde, C. (1999). Dynamic geometry software as a window on mathematical learning: Empirical research on the use of Cabri-geometry. In A. Gagatsis & G. Makrides (Eds.), Proceedings of the Second Mediterranean Conference on Mathematics Education. Nicosia, Cyprus: Cyprus Mathematical Society, 1 (pp.142-160).

  • Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. [Cabri-geometry is an environment for learning the concept of a geometric figure]. Recherche en Didactiques des Mathématiques, 14(12), 165–210.

    Google Scholar 

  • Luria, A. R. (1975). Linguaggio e sviluppo dei processi mentali nel bambino [Speech and the development of mental processes in the child]. Firenze: Giunti-Barbera.

    Google Scholar 

  • Mesquita A. (1989a). Sur une situation d’éveil à la déduction en géométrie. [A situation of introduction to the deduction in geometry] Educational Studies in Mathematics, 20, 95–109.

    Google Scholar 

  • Mesquita A. (1989b). L’influence des aspects figuratifs dans l’argumentation des élèves en géométrie : Eléments pour une typologie. [The influence of figurative aspects in the pupils'argumentation in geometry: Elements for a typology] Thèse de l’Université Luis Pasteur, Strasbourg, Publication de l’Institut de Recherche Mathématique Avancée.

  • Robotti, E. (2008). Les rôles du langage dans la recherche d’une démonstration en géométrie plane [Role of language in the research of plane geometry proof]. Recherche en Didactique des Mathématiques, 28(2), 183–218.

    Google Scholar 

  • Sfard, A. (2001a). Learning mathematics as developing a discourse. In: R. Speiser, C. Maher, C. Walter (Eds.), Proceedings of the 21st Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 2344). Columbus, OH: Clearing House for Science, Mathematics, and Environmental Education.

  • Sfard, A. (2001b). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46, 13–57.

    Article  Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Sfard, A., & Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students' mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76.

    Article  Google Scholar 

  • Vygotsky, L. (1938) Pensée et langage. [Thought and language] (1997) Paris: La Dispute.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Robotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robotti, E. Natural language as a tool for analyzing the proving process: the case of plane geometry proof. Educ Stud Math 80, 433–450 (2012). https://doi.org/10.1007/s10649-012-9383-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-012-9383-0

Keywords

Navigation