Educational Studies in Mathematics

, Volume 77, Issue 2–3, pp 285–311

# Objectification and semiotic function

• George Santi
Article

## Abstract

The objective of this paper is to study students’ difficulties when they have to ascribe the same meaning to different representations of the same mathematical object. We address two theoretical tools that are at the core of Radford’s cultural semiotic and Godino’s onto-semiotic approaches: objectification and the semiotic function. The analysis of a teaching experiment involving high school students working on the tangent, shows how students’ difficulties in ascribing sense to different representations of a common mathematical object can be traced back to the kind of objectification processes and semiotic functions they are able to establish.

## Keywords

Mathematical objects Semiotics Meaning Activity Objectification Semiotic function

## Notes

### Acknowledgments

I wish to thank the three anonymous reviewers as well as Norma Presmeg for their valuable and insightful comments on a previous version of this paper. A special thank to Bruno D’Amore for everything I have learned from him during his supervision of my Ph.D thesis, both at personal and scientific level. I would like to thank him also for his important contributions and revisions of this paper. I also would like to thank Raymond Duval, Juan Godino, and Luis Radford for the fruitful discussions, the thorough explanations, and their infinite kindness and generosity during my visits in Lille, Granada, and Sudbury. Last but not least, I wish to thank the teacher, Carmen Tabellini, and her students of the Liceo “E. Fermi”, Bologna, for their kind hospitality and their committed collaboration during the experiment.

## References

1. Biza, I., Christou, C., & Zachariades, T. (2008). Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean geometry to analysis. Research in Mathematics Education, 10(1), 53–70.
2. D’Amore, B. (2001). Concettualizzazione, registri di rappresentazioni semiotiche e noetica. [Conceptualization, semiotic registers and noetics]. La matematica e la sua didattica, 2, 150–173.Google Scholar
3. D’Amore, B. (2006). Oggetti matematici e senso. Le trasformazioni semiotiche cambiano il senso degli oggetti matematici. [Mathematical objects and sense. Semiotic transformations change the sense of mathematical objects]. La matematica e la sua didattica, 4, 557–583.Google Scholar
4. D’Amore, B., & Godino, D. J. (2006). Punti di vista antropologico ed ontosemiotico in Didattica della Matematica. [Anthropological and ontosemiotic points of view in mathematics education]. La matematica e la sua didattica, 1, 9–38.Google Scholar
5. Dodero, N., Baroncini, P., & Manfredi, R. (1998a). Nuovi elementi di matematica. [New elements of mathematics]. Volume A. Milan: Ghisetti & Corvi.Google Scholar
6. Dodero, N., Baroncini, P., & Manfredi, R. (1998b). Nuovi elementi di matematica. [New elements of mathematics]. Volume B. Milan: Ghisetti & Corvi.Google Scholar
7. Duval, R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée. [Semiotic registers and cognitive functioning of thinking]. Annales de Didactique et de Sciences Cognitives, 5, 37–65.Google Scholar
8. Duval, R. (1995). Semiosis et Pensée humaine. [Semiosis and human thinking]. Berne: Peter Lang.Google Scholar
9. Duval, R. (2006). Trasformazioni di rappresentazioni semiotiche e prassi di pensiero matematico. [Transformations of semiotic representations and praxes of mathematical thinking]. La matematica e la sua didattica, 4, 585–619.Google Scholar
10. Eco, U. (1979). Trattato di semiotica generale. [Treatise of general semiotics]. Milano: Bompiani.Google Scholar
11. Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.Google Scholar
12. Font, V., & Contreras, A. (2008). The problem of the particular and its relation to the general in mathematics education. Educational Studies in Mathematics, 69, 33–52.
13. Font, V., Godino, D. J., & D’Amore, B. (2007). Ontosemiotic approach of representation in mathematics education. For the Learning of Mathematics, 27(2), 2–14.Google Scholar
14. Font, V., Godino, J., & Contreras, A. (2008). From representations to onto-semiotic configurations in analysing mathematics teaching and learning processes. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education (pp. 157–173). Rotterdam: Sense Publishers.Google Scholar
15. Font, V., Godino, J. D., Planas, N., & Acevedo, J. I. (2010). The object metaphor and sinecdoque in mathematics classroom discourse. For the Learning of Mathematics, 30(1), 15–19.Google Scholar
16. Frid, S. (1991). Three approaches to undergraduate calculus instruction: Their nature and potential impact on students’ language use and source of conviction. In E. Dubinsky, A. H. Schoenfel, & J. Kaput (Eds.), Research in collegiate mathematics education. I (pp. 69–100). Providence, RI: American Mathematical Society.Google Scholar
17. Godino, J. (2002). Un enfoque ontológico y semiótico de la cognición matemática. [An ontological and semiotic approach to mathematical cognition]. Recherche en Didactique des Mathématiques, 22, 2.3, p. 5–6, appendix.Google Scholar
18. Hjemslev, L. (1943). Omkring sprogteoriens grundlæggelse. Danish original English edition: Prolegomena to a theory of language. 1961. Madison: University of Winconsin.Google Scholar
19. Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination and reason. Chicago, IL: University of Chicago Press.Google Scholar
20. Katz, V. J. (2009). A history of mathematics. Boston: Addison-Wesley.Google Scholar
21. Lakoff, G. (1987). Women, fire, and dangerous things. Chicago, IL: University of Chicago Press.Google Scholar
22. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. New York: Basic Books.Google Scholar
23. Malaspina, U., & Font, V. (2010). The role of intuition in the solving of optimization problems. Educational Studies in Mathematics. doi:.Google Scholar
24. Moreira, V., & Pinto, M. M. (2004). Technical school students’ conceptions of tangent lines. In H. M. Johnsen & F. A. Berit (Eds.), Proceedings of the 28th conference of the international group for the psychology of mathematics education (Vol. 4, pp. 33–40). Norway: Bergen University College.Google Scholar
25. Pech, E., Crisologo, D., & Martinez-Sierra, G. (2009). From the Euclidean to the Leibnizian conception. Tangent’s case in the mathematical convention frame. North American chapter of the International Group for the Psychology of Mathematics Education, Atlanta, GA, Sep 23, 2009. http://www.allacademic.com/meta/p369924_index.html.
26. Potari, D., Zachariades, T., Christou, C., Kyriazis, G., & Pitta-Pantazi, D. (2006). Teachers’ mathematical and pedagogical awareness in calculus teaching. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méendez (Eds.), Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 846–848). Mérida, México: Universidad Pedagógica Nacional.Google Scholar
27. Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics., 42, 237–268.
28. Radford, L. (2003). Gestures, speech, and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37–70.
29. Radford, L. (2004). La généralisation mathématique comme processus sémiotique. [Mathematical generalization as a semiotic process]. In G. Arrigo (Ed.), Atti del convegno di didattica della matematica 2004. Locarno, Alta Scuola Pedagogica (pp. 11–27). Locarno: Alta Scuola Pedagogica.Google Scholar
30. Radford, L. (2005). Body, tool, and symbol: Semiotic reflections on cognition. In: E. Simmt & B. Davis (Eds.), Proceedings of the 2004 annual meeting of the Canadian mathematics education study group (pp. 111–117).Google Scholar
31. Radford, L. (2006). The anthropology of meaning. Educational Studies in Mathematics, 61(1–2), 39–65.
32. Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education (pp. 215–234). Rotterdam: Sense Publishers.Google Scholar
33. Tall, D. (1987). Constructing the concept image of a tangent. In J. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the Eleventh International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 69–75). Montréal, Canada: Université de Montréal.Google Scholar
34. Thompson, P. W. (1991). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfel, & J. Kaput (Eds.), Research in collegiate mathematics education. I (pp. 21–44). Providence, RI: American Mathematical Society.Google Scholar
35. Ullmann, S. (1962). Semántica. Introducción a la ciencia del significado. [Semantics. Introduction to the science of meaning.]. Madrid: Aguilar.Google Scholar
36. Vygotsky, L. S. (1986). Thought and language. (Trans. A Kozulin). Cambridge, MA: MIT.Google Scholar
37. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.Google Scholar