Skip to main content
Log in

Modelling mathematical argumentation: the importance of qualification

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

In recent years several mathematics education researchers have attempted to analyse students’ arguments using a restricted form of Toulmin’s [The Uses of Argument, Cambridge University Press, UK, 1958] argumentation scheme. In this paper we report data from task-based interviews conducted with highly talented postgraduate mathematics students, and argue that a superior categorisation of genuine mathematical argumentation is provided by the use of Toulmin’s full scheme. In particular, we suggest that modal qualifiers play an important and previously unrecognised role in mathematical argumentation, and that one of the goals of instruction should be to develop students’ abilities to appropriately match up warrant-types with modal qualifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberdein, A. (2005). The uses of argument in mathematics. Argumentation, 19, 287–301.

    Article  Google Scholar 

  • Aberdein, A. (2006). The informal logic of mathematical proof. In R. Hersh (Ed.), 18 Unconventional Essays on the Nature of Mathematics, (pp. 56–70). Berlin Heidelberg New York: Springer.

    Chapter  Google Scholar 

  • Alcolea Banegas, J. (1998). L’Argumentació en matemàtiques. In E. C. i Moya (Ed.), XIIè Congrés Valenciaà de Filosofia, (pp. 135–147). Valencià, Spain: Diputació de Valencià.

    Google Scholar 

  • Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, Teachers and Children, (pp. 216–235). London, UK: Hodder.

    Google Scholar 

  • Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. International newsletter on the teaching and learning of mathematical proof. (July/August 1999)

  • Bromley, D. B. (1986). The case-study method in psychology and related disciplines. Chichester: Wiley.

    Google Scholar 

  • Burton, L. (2004). Mathematicians as enquirers: Learning about learning mathematics. Dordrecht: Kluwer.

    Google Scholar 

  • Duffin, J., & Simpson, A. (1993). Natural, conflicting and alien. Journal of Mathematical Behavior, 12, 313–328.

    Google Scholar 

  • Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration’. Educational Studies in Mathematics, 22, 233–261.

    Article  Google Scholar 

  • Evens, H., & Houssart, J. (2004). Categorizing pupils’ written answers to a mathematics test question: ‘I know but I can’t explain’. Educational Research, 46, 269–282.

    Article  Google Scholar 

  • Feferman, S. (2000). Mathematical intuition vs. mathematical monsters. Synthese, 125, 317–332.

    Article  Google Scholar 

  • Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics, 3(2), 9–18.

    Google Scholar 

  • Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht: Reidel.

    Google Scholar 

  • Ginsburg, H. (1981). The Clinical interview in psychological research on mathematical thinking: Aims, rationales, techniques. For the Learning of Mathematics, 1(1), 4–11.

    Google Scholar 

  • Hadamard, J. (1945). The psychology of invention in the mathematical field, 1954 edn. New York: Dover.

    Google Scholar 

  • Hahn, H. (1933/1960). The crisis in intuition. In J. R. Newman (Ed.), The world of mathematics. Vol 3, (pp. 1956–1976). London: G. Allen.

    Google Scholar 

  • Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell & R. Zazkis (Eds.), Learning and teaching number theory. (pp. 185–212). Norwood, New Jersey: Ablex.

    Google Scholar 

  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics III (pp. 234–282). Providence, Rhode Island: American Mathematical Society.

    Google Scholar 

  • Hoyles, C., & Küchemann, D. (2002). Students understanding of logical implication. Educational Studies in Mathematics, 51(3), 193–223.

    Article  Google Scholar 

  • Knipping, C. (2003). Argumentation structures in classroom proving situations. In M. A. Mariotti (Ed.), Proceedings of the third congress of the european society for research in mathematics education. Bellaria, Italy, ERME.

    Google Scholar 

  • Krummheuer, G. (1995). The ethnology of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures. (pp. 229–269). Hillsdale: Erlbaum.

    Google Scholar 

  • Mariotti, M. A. (2006). Proof and proving in mathematics education. In A. Gutiérrez and P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future, pp. 173–204. Rotterdam: Sense.

    Google Scholar 

  • Markowitz, L., & Tweney, D. (1981, May). An investigation of the behavior of mathematicians engaged in testing a conjecture. Presented at Midwestern Psychological Association, Detroit, MI.

  • Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. London: Addison-Wesley.

    Google Scholar 

  • Moore, E. H. (1900). On certain crinkly curves. Transactions of the American Mathematical Society, 1, 72–90.

    Article  Google Scholar 

  • Pedemonte, B. (2005). Quelques outils pour I’analyse cognitive du rapport entre argumentation et démonstration. Recherches en Didactique des Mathématiques, 25, 313–348.

    Google Scholar 

  • Pedemonte, B. (in press). How can the relationship between argumentation and proof be analysed? To appear in Educational Studies in Mathematics.

  • Poincaré, H. (1905). Science and hypothesis. London: Walter Scott Publishing.

    Google Scholar 

  • Rodd, M. M. (2000). On mathematical warrants: Proof does not always warrant, and a warrant may be other than a proof. Mathematical Thinking and Learning, 2, 221–244.

    Article  Google Scholar 

  • Simosi, M. (2003). Using Toulmin’s framework for the analysis of everyday argumentation: Some methodological considerations. Argumentation, 17, 185–202.

    Article  Google Scholar 

  • Simpson, A. (1995). Focusing on student attitudes to proof. Teaching and Learning Undergraduate Mathematics Newsletter, 3.

  • Tall, D. O. (2004). Building theories: The three worlds of mathematics: A comment on Inglis. For the Learning of Mathematics, 23(3), 29–32.

    Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30, 161–177.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. UK: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. (2001). Return to reason. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Toulmin, S., Rieke, R., & Janik, A. (1984). An introduction to reasoning (2nd ed.). New York: Macmillan.

    Google Scholar 

  • Weber, K. (2003). Students’ difficulties with proof. MAA Research sampler 8. http://www.maa.org/t.

  • Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics, 25(1), 34–38.

    Google Scholar 

  • Whyburn, G. (1942). What is a curve? American Mathematical Monthly, 49, 493–497.

    Article  Google Scholar 

  • Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th international conference on the psychology of mathematics education, Vol 1, pp.9–23. Utrecht, Holland, IGPME.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Inglis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inglis, M., Mejia-Ramos, J.P. & Simpson, A. Modelling mathematical argumentation: the importance of qualification. Educ Stud Math 66, 3–21 (2007). https://doi.org/10.1007/s10649-006-9059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-006-9059-8

Keywords

Navigation