Skip to main content
Log in

How can the relationship between argumentation and proof be analysed?

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

The paper presents a characterisation about argumentation and proof in mathematics. On the basis of contemporary linguistic theories, the hypothesis that proof is a special case of argumentation is put forward and Toulmin’s model is proposed as a methodological tool to compare them. This model can be used to detect and analyse the structure of an argumentation supporting a conjecture (abduction, induction, etc.) and the structure of its proof. The aim of the paper is to highlight the importance of structural analysis between argumentation and proof. This analysis shows that although there are clear cases of continuity between argumentation supporting a conjecture and its proof, there is often a structural distance between the two (from an abductive argumentation to a deductive proof, from an inductive argumentation to a mathematical inductive proof).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anscombre, J. C., & Ducrot, O. (1983). L’argumentation dans la langue. Bruxelles: Mardaga.

    Google Scholar 

  • Aristotle (1974). Les topiques: Livres I–VIII (French translation Tricot J. Paris: Libraire philosophique J. Vrin.)

  • Aristotle (1991). Rhetorique (French translation Dufour M., Wartelle A. Les belles lettres).

  • Arsac, G., Germain, G., & Mante, M. (1991). Problème ouvert et situation-problème. Lyon: IREM.

  • Balacheff, N. (1988). Une étude des processus de preuve en mathématiques chez les élèves de Collège, Thèse d’état. Grenoble: Université Joseph Fourier.

    Google Scholar 

  • Balacheff, N. (2000). A modelling challenge: Untangling learners’ knowing. Journées Internationales d’Orsay sur les Sciences Cognitives: L’apprentissage, JIOSC2000, Paris.

  • Balacheff, N., & Margolinas, C. (2005). cK¢ modèle de connaissances pour le calcul des situations didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble: La pensée sauvage.

    Google Scholar 

  • Boero, P., Garuti, R., & Mariotti, M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. Proceedings of the 20th conference of the international group for the psychology of mathematics education PME-XX, vol. 2, (pp. 121–128). Valencia.

  • Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational studies in mathematics, 24, 359–387.

    Google Scholar 

  • De Villiers, M. (1990). The role and function of proof in mathematics, adapted version of paper proof in the mathematics curriculum. Presented at the National Subject Didactics Symposium, University of Stellenbosh.

  • Douek, N. (1998). Some remarks about argumentation and mathematical proof and their education implications. In I. Schwank (Ed.), First European Conference of the Research in Mathematics Education CERME 1, vol. 1, (pp. 125–139). Osnabrück, Germany.

  • Ducrot, O., et al. (1980). Les mots du discours. Paris: Ed. de Minuit.

    Google Scholar 

  • Duval, R. (1992–1993). Argumenter démontrer expliquer : Continuité ou rupture cognitive? Petit X, 31, 37–61. Grenoble: IREM (Ed.).

  • Duval, R. (1995). Sémiosis et pensée humaine. Edition: Peter Lang, Suisse.

  • Fann, K. T. (1970). Peirce’s theory of abduction. The Hague, Holland: Martinus Nijhoff.

    Google Scholar 

  • Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive Unity of Theorems and Difficulty of Proof. Proceedings of the international group for the psychology of mathematics education PME-XXII, vol. 2, (pp. 345–352). Stellenbosch.

  • Garuti, R., Boero, P., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems. Proceedings of the international group for the psychology of mathematics education PME-XX, vol. 2, (pp. 113–120). Valencia.

  • Hanna, G. (1989). Proofs that prove and proofs that explain. In G. Vergnaud, J. Rogalski, & M. Artigue (Eds.), Proceedings of the international group for the psychology of mathematics education, PMEXIII, vol. 2, (pp. 45–51). Paris.

  • Hanna, G. (1991). Mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking, 54–61. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Hanna, G. (1995). Challenges to the Importance of Proof. For the Learning of Mathematics, 15(3), 42–49.

    Google Scholar 

  • Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell, & R. Zazkis (Eds.), Learning and teaching Number Theory. Journal of Mathematical Behavior (pp. 185–212). New Jersey, Ablex Publishing Corporation.

    Google Scholar 

  • Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education, vol. 3, (pp. 234–283). American Mathematical Society.

  • Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428.

    Article  Google Scholar 

  • Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb, & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations. The logic of mathematical discovery. Cambridge University Press, Cambridge; (Italian translation Benelli D. (1979). Dimostrazioni e confutazioni la logica della scoperta matematica. Milano: Feltrinelli).

  • Magnani, L. (2001). Abduction, reason and science. Processes of discovery and explanation. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Mariotti, M.A. (2001). Introduction to proof : The mediation of a dynamic software environment. Educational studies in mathematics, 44, Issues 1 & 2, 25–53.

  • Mariotti, M. A., Bartolini Bussi, M. G., Boero, P., Ferri, F., & Garuti, M. R. (1997). Approaching Geometry theorems in contexts: from history and epistemology to cognition. Proceeding of the international group for the psychology of mathematics education PME-21, vol. 1, (pp. 180–195). Lahti, Finland.

  • Pedemonte, B. (2001). Some cognitive aspects of the relationship between argumentation and proof in mathematics. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the international group for the psychology of mathematics education PME-25, vol. 4, (pp. 33–40). Utrecht (Olanda).

  • Pedemonte, B. (2002). Etude didactique et cognitive des rapports de largumentation et de la démonstration dans lapprentissage des mathématiques. Thèse de doctorat. Grenoble I: Université Joseph Fourier.

    Google Scholar 

  • Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration. Recherche en Didactique des Mathématiques, 25(3), 313–348.

    Google Scholar 

  • Peirce, C. S. (1960). Collected papers. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca L. (1958). Traité de l’argumentation-La nouvelle rhétorique. Editions de l’Université de Bruxelles, Bruxelles 1992 (5éme édition).

  • Plantin, C. (1990). Essais sur l’argumentation, Kimé (Ed.), Paris.

  • Polya, G. (1954). Mathematics and plausible reasoning. Princeton University Press, London. (French translation Vallée R. (1958), Les mathématiques et le raisonnement « plausible ». Gauthier – Villars (Ed.), Paris).

  • Polya, G. (1962). How to solve it? Princeton University Press, New York (French translation Mesnage C. Comment poser et résoudre un problème. Dunod (Ed.), Paris).

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Google Scholar 

  • Toulmin, S. E. (1993). The use of arguments. Cambridge: University Press (French translation De Brabanter P. (1958). Les usages de l’argumentation, Presse Universitaire de France).

  • Yackel, E. (2001). Explanation, Justification and argumentation in mathematics classrooms. In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the international group for the psychology of mathematics education PME-25, vol. 1, (pp. 1–9). Utrecht (Olanda).

  • Yackel, E., & Rasmussen, C. (2002). Beliefs and norms in the mathematics classroom. In G. Toerner, E. Pehkonen, & G. Leder (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 313–320). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Wood, T. (1999). Creating a Context for Argument in Mathematics Class Young Children’s Concepts of Shape. Journal for Research in Mathematics Education, 30(2), 171–191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Pedemonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedemonte, B. How can the relationship between argumentation and proof be analysed?. Educ Stud Math 66, 23–41 (2007). https://doi.org/10.1007/s10649-006-9057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-006-9057-x

Keywords

Navigation