Skip to main content

Advertisement

Log in

Finger Use and Arithmetic Skills in Children and Adolescents: a Scoping Review

  • REVIEW ARTICLE
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Although the role played by finger use in children’s numerical development has been widely investigated, their benefit in arithmetical contexts is still debated today. This scoping review aimed to systematically identify and summarize all studies that have investigated the relation between fingers and arithmetic skills in children. An extensive search on Ovid PsycINFO and Ovid Eric was performed. The reference lists of included articles were also searched for relevant articles. Two reviewers engaged in study selection and data extraction independently, based on the eligibility criteria. Discrepancies were resolved through discussion. Of the 4707 identified studies, 68 met the inclusion criteria and 7 additional papers were added from the reference lists of included studies. A total of 75 studies were included in this review. They came from two main research areas and were conducted with different aims and methods. Studies published in the mathematical education field (n = 29) aimed to determine what finger strategies are used during development and how they support computation skills. Studies published in cognitive psychology and neuroscience (n = 45) specified the cognitive processes and neurobiological mechanisms underlying the fingers/arithmetic relation. Only one study combined issues raised in both research areas. More studies are needed to determine which finger strategy is the most effective, how finger sensorimotor skills mediate the finger strategies/arithmetic relation, and how they should be integrated into educational practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Mental computation technique in which children use specific gestures imitating bead manipulation on an abacus.

  2. A Korean finger counting method in which each finger has a number value. The fingers of the right hand count as one except for the thumb, which counts as five, while the fingers of the left hand count as ten.

References

References marked with an asterisk indicate studies included in the scoping review.

  • Asakawa, A., & Sugimura, S. (2014). Developmental trajectory in the relationship between calculation skill and finger dexterity: A longitudinal study. Japanese Psychological Research, 56(2), 189–200. https://doi.org/10.1111/jpr.12041

    Article  Google Scholar 

  • Badets, A., Pesenti, M., & Olivier, E. (2010). Response-effect compatibility of finger-numeral configurations in arithmetical context. Quarterly Journal of Experimental Psychology, 63(1), 16–22. https://doi.org/10.1080/17470210903134385

    Article  Google Scholar 

  • Bahadir, E. (2017). Teaching multiplication and multiplication tables by application of finger multiplication. European Journal of Education Studies, 3(4), 124–147. 10.5281/zenodo.345417

  • Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: More than keeping track. Cognitive Development, 14(1), 37–56. https://doi.org/10.1016/S0885-2014(99)80017-3

    Article  Google Scholar 

  • Alloway, T. P., & Archibald, L. (2008). Working memory and learning in children and specific language impairment. Journal of Learning Disabilities, 41(3), 251-262. https://doi.org/10.1177/0022219408315815

  • Alloway, T. P., & Warner, C. (2008). Task-specific training, learning, and memory for children with developmental coordination disorder: A pilot study. Perceptual and Motor Skills, 107(2), 473–480. https://doi.org/10.2466/pms.107.6.473-480

  • Alloway, T. P., & Temple, K. J. (2007). A comparison of working memory skills and learning in children with developmental coordination disorder and moderate learning difficulties. Applied Cognitive Psychology, 21(4), 473–487. https://doi.org/10.1002/acp.1284

    Article  Google Scholar 

  • Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563–576. https://doi.org/10.1162/jocn.2007.19.4.563

    Article  Google Scholar 

  • Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62(3), 1520–1528. https://doi.org/10.1016/j.neuroimage.2012.05.047

    Article  Google Scholar 

  • Annett, M., & Manning, M. (1990). Arithmetic and laterality. Neuropsychologia, 28(1), 61–69. https://doi.org/10.1016/0028-3932(90)90086-4

  • Aromataris, E., & Munn, Z. (2020). JBI Manual for Evidence Synthesis. https://doi.org/10.46658/JBIMES-20-01

  • Asakawa, A., Murakami, T., & Sugimura, S. (2019). Effect of fine motor skills training on arithmetical ability in children. European Journal of Developmental Psychology, 16(3), 290–301. https://doi.org/10.1080/17405629.2017.1385454

  • Barnes, M. A., Stubbs, A., Raghubar, K. P., Agostino, A., Taylor, H., Laudry, S., Fletcher, J. M., & Smith-Chant, B. (2011). Mathematical skills in 3- and 5- year-olds with spina bifida and their typically developing peers: A longitudinal approach. Journal of the International Neuropsychological Society, 17(3), 431–444. https://doi.org/10.1017/S1355617711000233.

  • Baroody, A. J. (1987). The development of counting strategies for single-digit addition. Journal of Research in Mathematics Education, 18(2), 141–157. https://doi.org/10.2307/749248

  • Barrocas, R., Roesch, S., Dresen, V., Moeller, K., & Pixner, S. (2019). Embodied numerical representations and their association with multi-digit arithmetic performance. Cognitive Processing, 21(1), 95–103. https://doi.org/10.1007/s10339-019-00940-z

    Article  Google Scholar 

  • Barrocas, R., Roesch, S., Gawrilow, C., & Moeller, K. (2020). Putting a finger on numerical development – Reviewing the contributions of kindergarten finger gnosis and fine motor skills to numerical abilities. Frontiers in Psychology, 11, 1012. https://doi.org/10.3389/fpsyg.2020.01012

    Article  Google Scholar 

  • Beller, S., & Bender, A. (2011). Explicating numerical information: When and how fingers support (or hinder) number comprehension and handling. Frontiers in Psychology, 2, 214. https://doi.org/10.3389/fpsyg.2011.00214

    Article  Google Scholar 

  • Bender, A., & Beller, S. (2011). Fingers as a tool for counting - naturally fixed or culturally flexible? Frontiers in Psychology, 2, 256. https://doi.org/10.3389/fpsyg.2011.00256

    Article  Google Scholar 

  • Bender, A., & Beller, S. (2012). Nature and culture of finger counting: Diversity and representational effects of an embodied cognitive tool. Cognition, 124(2), 156–182. https://doi.org/10.1016/j.cognition.2012.05.005

    Article  Google Scholar 

  • Benton, A. L., Hutcheon, J., & Seymour, E. (1951). Arithmetic ability, finger-localization capacity and right-left discrimination in normal and defective children. American Journal of Orthopsychiatry, 21(4), 756-766. https://doi.org/10.1111/j.1939-0025.1951.tb00026.x

  • Berteletti, I., & Booth, J. R. (2015). Perceiving fingers in single-digit arithmetic problems. Frontiers in Psychology, 6, 226. https://doi.org/10.3389/fpsyg.2015.00226

  • Berteletti, I., & Booth, J. R. (2016). Finger representation and finger-based strategies in the acquisition of number meaning and arithmetic. In D. B. Berch, D. C. Geary, & K. M. Koepke (Eds.), Development of mathematical cognition (pp. 109–139). Academic Press. https://doi.org/10.1016/B978-0-12-801871-2.00005-8

    Chapter  Google Scholar 

  • Björklund, C., Kullberg, A., & Kempe, U. R. (2019). Structuring versus counting: Critical ways of using fingers in subtraction. ZDM Mathematics Education, 51(1), 13–24. https://doi.org/10.1007/s11858-018-0962-0

  • Boaler, J., & Chen, L. (2017). Why kids should use their fingers in math class. In M. Pitici (Ed.), The best writing on mathematics 2017 (pp. 76–81). Princeton University Press. https://doi.org/10.2307/j.ctvc776x9

    Chapter  Google Scholar 

  • Brighton, B., Bhandari, M., Tornetta, P., & Felson, D. T. (2003). Hierarchy of evidence: From case reports to randomized controlled trials. Clinical Orthopaedics and Related Research, 413, 19–24. https://doi.org/10.1097/01.blo.0000079323.41006.12

    Article  Google Scholar 

  • Brooks, N. B., Barner, D., Frank, M., & Goldin-meadow, S. (2018). The role of gesture in supporting mental representations: The case of mental abacus arithmetic. Cognitive Science, 42(2), 554–575. https://doi.org/10.1111/cogs.12527

    Article  Google Scholar 

  • Canobi, K. H. (2004). Individual differences in children’ s addition and subtraction knowledge. Cognitive Development, 19(1), 81–93. https://doi.org/10.1016/j.cogdev.2003.10.001

  • Carlson, A. G., Rowe, E., & Curby, T. W. (2013). Disentangling fine motor skills’ relations to academic achievement: The relative contributions of visual-spatial integration and visual-motor coordination. The Journal of Genetic Psychology, 174(5), 514–533. https://doi.org/10.1080/00221325.2012.717122

  • Chao, S., Stigler, J. W., & Woodward, J. A. (2000). The effects of physical materials on kindergartners’ learning of number concepts. Cognition and Instrution, 18(3), 285–316. https://doi.org/10.1207/S1532690XCI1803

  • Cho, P. S., & So, W. C. (2018). A feel for numbers: The changing role of gesture in manipulating the mental representation of an abacus among children at different skill levels. Frontiers in Psychology, 9, 1267. https://doi.org/10.3389/fpsyg.2018.01267

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.

    Google Scholar 

  • *Costa, A. J., Beatriz, J., Silva, L., Chagas, P. P., Krinzinger, H., Lonneman, J., Willmes, K., Wood, G., & Haase, V. G. (2011). A hand full of numbers: A role for offloading in arithmetics learning? Frontiers in Psychology, 2, 368. https://doi.org/10.3389/fpsyg.2011.00368

  • Costa-Giomi, E. (2004). Effects of three years of piano instruction on children’s academic achievement, school performance and self-esteem. Psychology of Music, 32(2), 139–152. https://doi.org/10.1177/0305735604041491

  • Crollen, V., & Noël, M. (2015). The role of fingers in the development of counting and arithmetic skills. Acta Psychologica, 156, 37–44. https://doi.org/10.1016/j.actpsy.2015.01.007

  • David, C. V. (2012). Working memory deficits in math learning difficulties: A meta-analysis. British Journal of Developmental Disabilities, 58(2), 67–84. https://doi.org/10.1179/2047387711Y.0000000007

    Article  Google Scholar 

  • Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185, 27–39. https://doi.org/10.1007/s00221-007-1132-8

    Article  Google Scholar 

  • Di Luca, S., Lefèvre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations. Cognition, 117(1), 95–100. https://doi.org/10.1016/j.cognition.2010.06.008

    Article  Google Scholar 

  • Dielman, T., & Furuno, S. (1970). Interrelationships among selected environmental, cognitive, and achievement variables: A further analyses of ten-year follow-up of the children of the kauai pregnancy study. Personnality, 1(3), 185-199.

  • Dinehart, L., & Manfra, L. (2013). Associations between low-income children’s fine motor skills in preschool and academic performance in second grade. Early Education and Development, 24(2), 138–161. https://doi.org/10.1080/10409289.2011.636729

  • Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: Evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44(4), 359–367. https://doi.org/10.1016/j.cortex.2007.08.001

    Article  Google Scholar 

  • Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H. C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251–266. https://doi.org/10.1016/j.cognition.2010.05.007

    Article  Google Scholar 

  • Dupont-boime, J., & Thevenot, C. (2018). High working memory capacity favours the use of finger counting in six-year-old children. Journal of Cognitive Psychology, 30(1), 35–42. https://doi.org/10.1080/20445911.2017.1396990

  • Farrington-flint, L., Vanuxem-cotterill, S., & Stiller, J. (2009). Patterns of problem-soving in children’s literacy and arithmetic. British Journal of Developmental Psychology, 27(4), 815–834. https://doi.org/10.1348/026151008X383148

  • Fischer, U., Suggate, S. P., Schmirl, J., & Stoeger, H. (2018). Counting on fine motor skills: Links between preschool finger dexterity and numerical skills. Developmental Science, 21(4), 623. https://doi.org/10.1111/desc.12623

    Article  Google Scholar 

  • Friso-van Den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003

    Article  Google Scholar 

  • Fuson, K. C., & Kwon, Y. (1992). Korean children’s single-digit addition and subtraction. Journal for Research in Mathematical Education, 23(2), 148–165. https://doi.org/10.2307/749498

  • Fuson, K. C., & Secada, W. G. (1986). Teaching children to add by counting-on with one-handed finger patterns. Cognition and Instruction, 3(3), 229–260.

  • Fuson, K. C., & Willis, G. B. (1988). Subtracting by counting up : More evidence. Journal for Research in Mathematical Education, 19(5), 402–420. https://doi.org/10.2307/749174

  • Fuson, K. C. (1986). Teaching children to subtract by counting up. Journal for Research in Mathematical Education, 17(3), 172–189. https://doi.org/10.2307/749300

  • Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developemental Psychology, 27(5), 787–797. https://doi.org/10.1037/0012-1649.27.5.787

  • Geary, D. C., Bow-thomas, C. C., Fan, L., & Siegler, R. S. (1993). Even before formal instruction, Chinese children outperform American children in mental addition. Cognitive Development, 8(4), 517–529. https://doi.org/10.1016/S0885-2014(05)80007-3

  • Geary, D. C., Hoard, M. K., Byrd-craven, J., & Desoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121–151. https://doi.org/10.1016/j.jecp.2004.03.002

  • Gerstmann, J. (1940). Syndrome of finger agnosia, desorientation for right and left, agraphia and acalculia. Archives of Neurologie and Psychiatry, 44(2), 398–408. https://doi.org/10.1001/archneurpsyc.1940.02280080158009

    Article  Google Scholar 

  • Gibson, D. J., Gunderson, E. A., Spaepen, E., Levine, S. C., & Meadow, S. G. (2019). Number gestures predict learning of number words. Developmental Science, 22(3), e12791. https://doi.org/10.1111/desc.12791

    Article  Google Scholar 

  • Ginns, P., Hu, F. T., Byrne, E., & Bobis, J. (2016). Learning by tracing worked examples. Applied Cognitive Psychology, 30(2), 160–169. https://doi.org/10.1002/acp.3171

    Article  Google Scholar 

  • Ginns, P., Hu, F. T., & Bobis, J. (2020). Tracing enhances problem-solving transfer, but without effects on intrinsic or extraneous cognitive load. Applied Cognitive Psychology, 34(6), 1522–1529. https://doi.org/10.1002/acp.3732

    Article  Google Scholar 

  • Gomez, A., Piazza, M., Jobert, A., Dehaene-Lambertz, G., Dehaene, S., & Huron, C. (2015). Mathematical difficulties in developmental coordination disorder: Symbolic and nonsymbolic number processing. Research in Developmental Disabilities, 43–44, 167–178. https://doi.org/10.1016/j.ridd.2015.06.011

  • Gracia-Bafalluy, M., & Noël, M. P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44(4), 368–375. https://doi.org/10.1016/j.cortex.2007.08.020

  • Graham, T. A. (1999). The role of gesture in children’s learning to count. Journal of Experimental Child Psychology, 74(4), 333–355. https://doi.org/10.1006/jecp.1999.2520

    Article  Google Scholar 

  • Gunderson, E. A., Spaepen, E., Gibson, D., Goldin-Meadow, S., & Levine, S. C. (2015). Gesture as a window onto children’s number knowledge. Cognition, 144, 14–28. https://doi.org/10.1016/j.cognition.2015.07.008

    Article  Google Scholar 

  • Hohol, M., Wołoszyn, K., Nuerk, H.-C., & Cipora, K. (2018). A large-scale survey on finger counting routines, their temporal stability and flexibility in educated adults. PeerJ, 6, e5878. https://doi.org/10.7717/peerj.5878

    Article  Google Scholar 

  • Holsti, L., & Grunau, R. E. (2002). Developmental coordination disorder in extremely low birthweight children developmental coordination disorder in extremely low birth weight children at nine years. Developmental and Behavioral Pediatrics, 23(1), 8–15. https://doi.org/10.1203/00006450-199904020-01460

  • Ilardi, D., & Lamotte, J. (2021). Clinical practice in cognitive mechanisms that predict lower math in children with congenital heart disease. Clinical Practice in Pediatric Psychology, 9(1), 35–45. https://doi.org/10.1037/cpp0000316

  • Imbo, I., Vandierendonck, A., & Fias, W. (2011). Passive hand movements disrupt adults’ counting strategies. Frontiers in Psychology, 2, 201. https://doi.org/10.3389/fpsyg.2011.00201

    Article  Google Scholar 

  • Jenks, K. M., de Moor, J., & van Lieshout, E. C. D. M. (2009). Arithmetic difficulties in children with cerebral palsy are related to executive function and working memory. Journal of Child Psychology and Psychiatry and Allied Disciplines, 50(7), 824–833. https://doi.org/10.1111/j.1469-7610.2008.02031.x

  • Johansson, B. S. (2005). Number-word sequence skill and arithmetic performance. Scandinavian Journal of Psychology, 46(2), 157–167. https://doi.org/10.1111/j.1467-9450.2005.00445.x

    Article  Google Scholar 

  • Jordan, N. C., Huttenlocher, J., & Cohen Levine, S. (1992). Differential calculation abilities in young children from middle- and low-income families. Developemental Psychology, 28(4), 644–653. https://doi.org/10.1037/0012-1649.28.4.644

  • Jordan, N.C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Development, 74(3), 834–850. https://doi.org/10.1111/1467-8624.00571

  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11(5), 662–668. https://doi.org/10.1111/j.1467-7687.2008.00715.x

  • Kaufmann, L. (2008). Dyscalculia: Neuroscience and education. Educational Research, 50(2), 163–175. https://doi.org/10.1080/00131880802082658

    Article  Google Scholar 

  • Kiessling, L. S., Denckla, M. B., & Carlton, M. (1983). Evidence for differential hemispheric function in children with hemiplegic cerebral palsy. Developmental Medicine and Child Neurology, 25(6), 727–734. https://doi.org/10.1111/j.1469-8749.1983.tb13840.x

  • Kinsbourne, M., & Warrington, E. K. . (1963). The developmetal Gerstmann syndrome. Achieve of Neurology, 8(5), 490–501. https://doi.org/10.1001/archneur.1963.00460050040004

  • Klein, E., Moeller, K., Willmes, K., Nuerk, H. C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in Psychology, 2, 197. https://doi.org/10.3389/fpsyg.2011.00197

    Article  Google Scholar 

  • Kohen-Raz, R., & Masalha, M. (1988). Relations of basic arithmetic and motor skills in deaf elementary school children. Perceptual and Motor Skills, 66(1), 275–282. https://doi.org/10.2466/pms.1988.66.1.275

  • Koponen, T., Aro, T., Räsänen, P., & Ahonen, T. (2007). Langage-based retrieval difficulties in arithmetic: A single case intervention study comparing two children with SLI. Educational and Child Psychology, 24(2), 98-107.

  • Krinzinger, H., Koten, J. W., Horoufchin, H., Kohn, N., Arndt, D., Sahr, K., Konrad, K., & Willmes, K. (2011). The role of finger representations and saccades for number processing: An fMRI study in children. Frontiers in Psychology, 2, 373. https://doi.org/10.3389/fpsyg.2011.00373

  • Kullberg, A., & Björklund, C. (2020). Preschoolers’ different ways of structuring part‑part‑whole relations with finger patterns when solving an arithmetic task. ZDM Mathematics Education, 52, 767–778. https://doi.org/10.1007/s11858-019-01119-8

  • Lindemann, O., Alipour, A., & Fischer, M. H. (2011). Finger counting habits in middle eastern and western individuals: An online survey. Journal of Cross-Cultural Psychology, 42(4), 566–578. https://doi.org/10.1177/0022022111406254

    Article  Google Scholar 

  • Lindgren, S. D. (1978). Finger localization and the prediction of reading disability. Cortex, 14(1), 87–101. https://doi.org/10.1016/S0010-9452(78)80011-2

  • Long, I., Malone, S. A., Tolan, A., Burgoyne, K., Heron-delaney, M., Witteveen, K., & Hulme, C. (2016). The cognitive foundations of early arithmetic skills: It is counting and number judgment, but not finger gnosis, that count. Journal of Experimental Child Psychology, 152, 327–334. https://doi.org/10.1016/j.jecp.2016.08.005

  • Lucangeli, D., Tressoldi, P. E., Bendotti, M., Siegel, L. S., Lucangeli, D., Tressoldi, P. E., & Bendotti, M. (2003). Effective strategies for mental and written arithmetic calculation from the third to the fifth grade. Educational Psychology, 23(5), 507–520. https://doi.org/10.1080/0144341032000123769

  • Luo, Z., Jose, P. E., Huntsinger, C. S., & Pigott, T. D. (2007). Fine motor skills and mathematics achievement in east asian american and european american kindergartners and first graders. British Journal of Developmental Psychology, 25(4), 595–614. https://doi.org/10.1348/026151007X185329

    Article  Google Scholar 

  • Malone, S. A., Burgoyne, K., & Hulme, C. (2020). Number knowledge and the approximate number system are two critical foundations for early arithmetic development. Journal of Educational Psychology, 112(6), 1167–1182. https://doi.org/10.1037/edu0000426

  • Mayer, E., Martory, M. D., Pegna, A. J., Landis, T., Delavelle, J., & Annoni, J. M. (1999). A pure case of Gerstmann syndrome with a subangular lesion. Brain, 122(6), 1107–1120. https://doi.org/10.1093/brain/122.6.1107

    Article  Google Scholar 

  • McKenna, M. A., Hollingsworth, P. L., & Barnes, L. L. B. (2005). Developing latent mathematics abilities in economically disadvantaged students. Roeper Review, 27(4), 222–227. https://doi.org/10.1080/02783190509554322

    Article  Google Scholar 

  • Michaux, N., Masson, N., Pesenti, M., & Andres, M. (2013). Selective interference of finger movements on basic addition and subtraction problem solving. Experimental Psychology, 60, 197–205. https://doi.org/10.1027/1618-3169/a000188

    Article  Google Scholar 

  • Michel, E., Molitor, S., Schneider, W., Michel, E., Molitor, S., & Schneider, W. (2020). Executive functions and fine motor skills in kindergarten as predictors of arithmetic skills in elementary school executive functions and fine motor skills in kindergarten as predictors of arithmetic skills in elementary school. Developmental Neuropsychology, 45(6), 367–379. https://doi.org/10.1080/87565641.2020.1821033

  • Moeller, K., Martignon, L., Wessolowski, S., Engel, J., & Nuerk, H. C. (2011). Effects of finger counting on numerical development the opposing views of neurocognition and mathematics education. Frontiers in Psychology, 2, 328. https://doi.org/10.3389/fpsyg.2011.00328

    Article  Google Scholar 

  • Morgan, P. L., Farkas, G., & Maczuga, S. (2015). Which instructional practices most help first-grade students with and without mathematics difficulties? Educational Evaluation and Policy Analysis, 37(2), 184–205. https://doi.org/10.3102/0162373714536608

    Article  Google Scholar 

  • Morrissey, K. R., Liu, M., Kang, J., Hallett, D., & Wang, Q. (2016). Cross-cultural and intra-cultural differences in finger-counting habits and number magnitude processing: Embodied numerosity in Canadian and Chinese university students. Journal of Numerical Cognition, 2(1), 1–19. https://doi.org/10.5964/jnc.v2i1.14

    Article  Google Scholar 

  • Morrissey, K., Hallett, D., Wynes, R., Kang, J., & Han, M. (2020). Finger-counting habits, not finger movements, predict simple arithmetic problem solving. Psychological Research Psychologische Forschung, 84(1), 140–151. https://doi.org/10.1007/s00426-018-0990-y

    Article  Google Scholar 

  • Multu, Y., Akgün, L., & Akkusci, E. Y. (2020). What do teachers think about youth purpose? International Journal of Curriculum Instruction, 12(1), 268–288. https://doi.org/10.4324/9781351200073-6

    Article  Google Scholar 

  • Murad, M. H., Asi, N., Alsawas, M., & Alahdab, F. (2016). New evidence pyramid. Evidence-Based Medicine, 21(4), 125–127. https://doi.org/10.1136/ebmed-2016-110401

    Article  Google Scholar 

  • Newman, S. D., & Soylu, F. (2014). The impact of finger counting habits on arithmetic in adults and children. Psychological Research, 78, 549–556. https://doi.org/10.1007/s00426-013-0505-9

  • Newman, S. D. (2016). Does finger sense predict addition performance? Cognitive Processing, 17(2), 139–146. https://doi.org/10.1007/s10339-016-0756-7

  • Nicoladis, E., Poka, S., & Marentette, P. (2010). Are number gestures easier than number words for preschoolers? Cognitive Development, 25(3), 247–261. https://doi.org/10.1016/j.cogdev.2010.04.001

    Article  Google Scholar 

  • Nicoladis, E., Marentette, P., Pika, S., & Gonçalves Bardosa, P. (2018). Young children show little sensitivity to the iconicity in number gestures. Language Learning and Development, 14(4), 297–319. https://doi.org/10.1080/15475441.2018.1444486

    Article  Google Scholar 

  • Noël, M. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 11(5), 413–430. https://doi.org/10.1080/09297040590951550

  • Nwabueze, K. (2001). Bruneian children’ s addition and subtraction methods. Journal of Mathematical Behavior, 20(2), 173–186. https://doi.org/10.1016/S0732-3123(01)00070-0

  • Ollivier, F., Noël, Y., Legrand, A., & Bonneton-botté, N. (2020). A teacher-implemented intervention program to promote finger use in numerical tasks. European Journal of Psychology of Education, 35, 589–606. https://doi.org/10.1007/s10212-019-00441-9

  • Peng, P., Namkung, J., Barnes, M., & Sun, C. (2015). A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108(4), 455–473. https://doi.org/10.1037/edu0000079

    Article  Google Scholar 

  • Pieters, S., Desoete, A., Roeyers, H., Vanderswalmen, R., & Van Waelvelde, H. (2012a). Behind mathematical learning disabilities: What about visual perception and motor skills ? Learning and Individual Differences, 22(4), 498–504. https://doi.org/10.1016/j.lindif.2012.03.014

  • Pieters, S., Desoete, A., Van Waelvelde, H., Vanderswalmen, R., & Roeyers, H. (2012b). Mathematical problems in children with developmental coordination disorder. Research in Developmental Disabilities, 33(4), 1128–1135. https://doi.org/10.1016/j.ridd.2012.02.007

  • Pitchford, N. J., Papini, C., Outhwaite, L. A., & Gulliford, A. (2016). Fine motor skills predict maths ability better than they predict reading ability in the early primary school years. Frontiers in Psychology, 7, 783. https://doi.org/10.3389/fpsyg.2016.00783

  • Raghubar, K. P., Barnes, M. A., Dennis, M., Cirino, P. T., Taylor, H., & Laudry, S. (2015). Neurocognitive predictors of mathematical processing in school-aged children with spina bifida and their typically developing peers: Attention, working memory, and fine motor skills. Neuropsychology, 29(6), 861–873. https://doi.org/10.1037/neu0000196.Neurocognitive

  • Reeve, R., & Humberstone, J. (2011). Five- to 7-year-olds’ finger gnosia and calculation abilities. Frontiers in Psychology, 2, 359. https://doi.org/10.3389/fpsyg.2011.00359

  • Reynvoet, B., Marinova, M., & Sasanguie, D. (2020). Take it of your shoulders: Providing scaffolds leads to better performance on mathematical word problems in secondary school children with developmental coordination disorder. Research in Developmental Disabilities, 105, 103745. https://doi.org/10.1016/j.ridd.2020.103745

  • Roberts, G., Anderson, P. J., Davis, N., Luca, C. D. E., & Cheong, J. (2011). Developmental coordination disorder in geographic cohorts of 8-year-old children born extremely preterm or extremely low birthweight in the 1990s. Developmental Medicine & Child Neurology, 53(1), 55–60. https://doi.org/10.1111/j.1469-8749.2010.03779.x

  • Roesch, S., & Moeller, K. (2015). Considering digits in a current model of numerical development. Frontiers in Human Neuroscience, 8, 1062. https://doi.org/10.3389/fnhum.2014.01062

    Article  Google Scholar 

  • Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: RTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609–1624. https://doi.org/10.1016/j.neuropsychologia.2005.01.009

    Article  Google Scholar 

  • Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: Modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684–693. https://doi.org/10.1162/jocn.2007.19.4.684

    Article  Google Scholar 

  • Saunders, A. F., Spooner, F., & Davis, L. L. (2018). Using video prompting to teach mathematical problem solving of real-world video-simulation problems. Remedial and Special Education, 39(1), 53-64. https://doi.org/10.1177/0741932517717042

  • Schild, U., Bauch, A., & Nuerk, H. C. (2020). A finger-based numerical training failed to improve arithmetic skills in kindergarten children beyond effects of an active non-numerical control training. Frontiers in Psychology, 11, 529. https://doi.org/10.3389/fpsyg.2020.00529

    Article  Google Scholar 

  • Siegel, L. S. (1992). Infant motor, cognitive, and language behaviors as predicators of achievement at school age. Advances in Infancy Research, 7, 227–237.

    Google Scholar 

  • Sixtus, E., Fischer, M. H., & Lindemann, O. (2017). Finger posing primes number comprehension. Cognitive Processing, 18(3), 237–248. https://doi.org/10.1007/s10339-017-0804-y

    Article  Google Scholar 

  • Skinner, C. H., Turco, T. L., Beatty, K. L., & Rasavage, C. (1989). Cover, copy, and compare: A method for increasing multiplication performance. School Psychology Review, 18(3), 412–420. https://doi.org/10.1080/02796015.1989.12085436

    Article  Google Scholar 

  • Soylu, F., & Newman, S. (2016). Anatomically ordered tapping interferes more with one-digit addition than two-digit addition : A dual-task fMRI study. Cognitive Processing, 17(1), 67–77. https://doi.org/10.1007/s10339-015-0737-2

    Article  Google Scholar 

  • Soylu, F., Lester, F. K., & Newman, S. D. (2018). You can count on your fingers: The role of fingers in early mathematical development. Journal of Numerical Cognition, 4(1), 107–135. https://doi.org/10.5964/jnc.v4i1.85

    Article  Google Scholar 

  • Stegemann, K. C. (2014). Revisiting an old methodology for teaching counting, computation, and place value: The effectiveness of the finger calculation method for at-risk children. Learning Disabilities: A Contemporary Journal, 12(2). 191-213.

  • Stocker, J. D., & Kubina, R. M. (2017). Impact of cover, copy, and compare on fluency outcomes for students with disabilities and math deficits: A review of the literature. Preventing School Failure, 61(1), 56–68. https://doi.org/10.1080/1045988X.2016.1196643

    Article  Google Scholar 

  • Strauss, A., & Werner, H. (1938). Deficiency in the finger schema in relation to arithmetic disability (finger agnosia and acalculia). The American Journal of Orthopsychiatry, 8(4), 719-725. https://doi.org/10.1111/j.1939-0025.1938.tb05344.x

  • Suggate, S., Pufke, E., & Stoeger, H. (2018). Do fine motor skills contribute to early reading development? Journal of Research in Reading, 41(1), 1–19. https://doi.org/10.1111/1467-9817.12081

    Article  Google Scholar 

  • Svenson, O., & Sjöberg, K. (1982). Solving simple subtractions during the first three school years. Journal of Experimental Education, 50, 91–100. https://doi.org/10.1080/00220973.1981.11011808

  • Thevenot, C., Castel, C., Danjon, J., Renaud, O., Ballaz, C., Baggioni, L., & Fluss, J. (2014). Numerical abilities in children with congenital hemiplegia: An investigation of the role of finger use in number processing. Developmental Neuropsychology, 39(2), 88–100. https://doi.org/10.1080/87565641.2013.860979

  • Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850

  • Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. NeuroImage, 59(4), 3139–3148. https://doi.org/10.1016/j.neuroimage.2011.11.037

    Article  Google Scholar 

  • Van den Berg, F. C. G., de Weerd, P., & Jonkman, L. M. (2021). Electrophysiological evidence for internalized representations of canonical finger-number gestures and their facilitating effects on adults’ math verification performance. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-91303-2

    Article  Google Scholar 

  • VanRooijen, M. Van, Verhoeven, L., Smits, D., Ketelaar, M., Becher, J. G., & Steenbergen, B. (2012). Arithmetic performance of children with cerebral palsy: The influence of cognitive and motor factors. Research in Developmental Disabilities, 33(2), 530–537. https://doi.org/10.1016/j.ridd.2011.10.020

  • VanRooijen, M., Verhoeven, L., & Steenbergen, B. (2015). From numeracy to arithmetic: Precursors of arithmetic performance in children with cerebral palsy from 6 till 8 years of age. Research in Developmental Disabilities, 45-46, 49–57. https://doi.org/10.1016/j.ridd.2015.07.001

  • Waber, D. P., Weiler, M. D., Bellinger, D. C., Marcus, D. J., Forbes, P. W., Wypij, D., & Wolff, P. H. (2000). Diminished motor timing control in children referred for diagnosis of learning problems. Developmental Neuropsychology, 17(2), 181–197. https://doi.org/10.1207/S15326942DN1702

  • Wasner, M., Moeller, K., Fischer, M. H., & Nuerk, H. C. (2015). Related but not the same: Ordinality, cardinality and 1-to-1 correspondence in finger-based numerical representations. Journal of Cognitive Psychology, 27(4), 426–441. https://doi.org/10.1080/20445911.2014.964719

  • Wasner, M., Nuerk, H., Martignon, L., Roesch, S., & Moeller, K. (2016). Finger gnosis predicts a unique but small part of variance in initial arithmetic performance. Journal of Experimental Child Psychology, 146, 1–16. https://doi.org/10.1016/j.jecp.2016.01.006

    Article  Google Scholar 

  • Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43(7), 352–360. https://doi.org/10.3102/0013189X14553660

    Article  Google Scholar 

  • Werner, H., & Carrison, D. (1942). Measurement and development of the finger schema in mentally retarded children: Relation of arithmetic achievement to performance on the Finger Schema Test. The Journal of Educational Psychology, 33(4), 252–264.

  • Wylie, J., Jordan, J., & Mulhern, G. (2012). Journal of experimental child strategic development in exact calculation: Group and individual differences in four achievement subtypes. Journal of Experimental Child Psychology, 113(1), 112–130. https://doi.org/10.1016/j.jecp.2012.05.005

  • Zafranas, N. (2004). Piano keyboard training and the spatial – temporal development of young children attending kindergarten classes in Greece. Early Child Development and Care, 174(2), 199–211. https://doi.org/10.1080/0300443032000153534

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maëlle Neveu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 76.5 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neveu, M., Geurten, M., Durieux, N. et al. Finger Use and Arithmetic Skills in Children and Adolescents: a Scoping Review. Educ Psychol Rev 35, 2 (2023). https://doi.org/10.1007/s10648-023-09722-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10648-023-09722-8

Keywords

Navigation