Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14).
Aditomo, A., & Klieme, E. (2020). Forms of inquiry-based science instruction and their relations with learning outcomes: Evidence from high and low-performing education systems. International Journal of Science Education. https://doi.org/10.1080/09500693.2020.1716093
Areepattamannil, S. (2012). Effects of inquiry-based science instruction on science achievement and interest in science: Evidence from Qatar. The Journal of Educational Research, 105(2), 134–146.
Article
Google Scholar
Ashman, G., Kalyuga, S., & Sweller, J. (2020). Problem-solving or explicit instruction: Which should go first when element interactivity is high? Educational Psychology Review, 32, 229–247. https://doi.org/10.1007/s10648-019-09500-5
Article
Google Scholar
Australian Curriculum Assessment and Reporting Authority. (2018). Year 10 Australian Curriculum Retrieved from www.australiancurriculum.edu.au/f-10-curriculum/science/aims/
Barton, A. C., & Tan, E. (2010). We be burnin’! agency, identity, and science learning. Journal of the Learning Sciences, 19(2), 187–229.
Article
Google Scholar
British Columbia Ministry of Education. (2015). B.C.'s Curriculum: Science. Retrieved from https://curriculum.gov.bc.ca/curriculum/science
Cairns, D., & Areepattamannil, S. (2019). Exploring the relations of inquiry-based teaching to science achievement and dispositions in 54 countries. Research in Science Education, 49(1), 1–23.
Article
Google Scholar
Campbell, D. T., & Stanley, J. C. (1966). Experimental and quasi-experimental designs for research. Houghton Mifflin Company.
Google Scholar
Carlson, R. A., Lundy, D. H., & Schneider, W. (1992). Strategy guidance and memory aiding in learning a problem-solving skill. Human Factors, 34(2), 129–145.
Article
Google Scholar
Chen, O., Kalyuga, S., & Sweller, J. (2015). The worked example effect, the generation effect, and element interactivity. Journal of Educational Psychology, 107, 689–704.
Article
Google Scholar
Chen, O., Kalyuga, S., & Sweller, J. (2016). Relations between the worked example and generation effects on immediate and delayed tests. Learning and Instruction, 45, 20–30.
Article
Google Scholar
Coördinatiegroep curriculum.nu. (2019). Samen bouwen aan het primair en voortgezet onderwijs van morgen Deel 1: Adviezen van de Coördinatiegroep Curriculum.nu. [Building tomorrow's primary and secondary education together Part 1: Advice from the Curriculum.nu Coordination Group]. Den Haag, the Netherlands: Coördinatiegroep curriculum.nu. Retrieved from https://www.curriculum.nu/download/advies-coordinatiegroep/
DeCaro, M. S., & Rittle-Johnson, B. (2012). Exploring mathematics problems prepares children to learn from instruction. Journal of Experimental Child Psychology, 113(4), 552–568.
Article
Google Scholar
Edelson, D. C., & Reiser, B. J. (2006). Making authentic practices accessible to learners: Design challenges and strategies. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 335–354). Cambridge University Press.
Google Scholar
Forbes, C. T., Neumann, K., & Schiepe-Tiska, A. (2020). Patterns of inquiry-based science instruction and student science achievement in PISA 2015. International Journal of Science Education. https://doi.org/10.1080/09500693.2020.1730017
Article
Google Scholar
Furtak, E. M. (2006). The problem with answers: An exploration of guided scientific inquiry teaching. Science Education, 90(3), 453–467.
Article
Google Scholar
Fyfe, E. R., DeCaro, M. S., & Rittle-Johnson, B. (2014). An alternative time for telling: When conceptual instruction prior to problem solving improves mathematical knowledge. British Journal of Educational Psychology, 84(3), 502–519.
Article
Google Scholar
Gao, S., Wang, J., & Zhong, Z. (2017). Influence of science instruction reform on academic performance of eighth grade students in Chinese inner-Mongolia autonomous region. Compare: A Journal of Comparative and International Education. https://doi.org/10.1080/03057925.2017.1365285
Article
Google Scholar
García-Carmona, A. (2020). From inquiry-based science education to the approach based on scientific practices. Science & Education. https://doi.org/10.1007/s11191-020-00108-8
Article
Google Scholar
Geier, R., Blumenfeld, P. C., Marx, R. W., Krajcik, J. S., Fishman, B., Soloway, E., & Clay-Chambers, J. (2008). Standardized test outcomes for students engaged in inquiry-based science curricula in the context of urban reform. Journal of Research in Science Teaching, 45(8), 922–939. Retrieved from - https://doi.org/10.1002/tea.20248
Glogger-Frey, I., Fleischer, C., Grüny, L., Kappich, J., & Renkl, A. (2015). Inventing a solution and studying a worked solution prepare differently for learning from direct instruction. Learning and Instruction, 39(72–87).
Hedges, L. V., & Schauer, J. (2018). Randomised trials in education in the USA. Educational Research. https://doi.org/10.1080/00131881.2018.1493350
Article
Google Scholar
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107.
Article
Google Scholar
Hodson, D. (1996). Practical work in school science: Exploring some directions for change. International Journal of Science Education, 18(7), 755–760.
Article
Google Scholar
Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52(2), 201–217.
Article
Google Scholar
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54. https://doi.org/10.1002/sce.10106
Article
Google Scholar
Hsu, C.-Y., Kalyuga, S., & Sweller, J. (2015). When should guidance be presented during physics instruction? Archives of Scientific Psychology, 3(1), 37–53. https://doi.org/10.3886/ICPSR35626.v1
Article
Google Scholar
Jacobson, M. J., Markauskaite, L., Portolese, A., Kapur, M., Lai, P. K., & Roberts, G. (2017). Designs for learning about climate change as a complex system. Learning and Instruction, 1–14.
Jerrim, J., Oliver, M., & Sims, S. (2019). The relationship between inquiry-based teaching and students’ achievement. New evidence from a longitudinal PISA study in England. Learning and Instruction, 61, 35–44.
Article
Google Scholar
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.
Article
Google Scholar
Kapur, M. (2008). Productive failure. Cognition and Instruction, 26, 379–424.
Article
Google Scholar
Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38, 523–550.
Article
Google Scholar
Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1), 45–83.
Article
Google Scholar
Kaya, S., & Rice, D. C. (2010). Multilevel effects of student and classroom factors on elementary science achievement in five countries. International Journal of Science Education, 32(10), 1337–1363.
Article
Google Scholar
Kirschner, P. A. (1992). Epistemology, practical work and Academic skills in science education. Science & Education, 1(3), 273–299.
Article
Google Scholar
Kirschner, P. A. (2000). The inevitable duality of education: Cooperative higher education. Inaugural Address. Retrieved from Maarsticht, The Netherlands:
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.
Article
Google Scholar
Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667.
Article
Google Scholar
Kuhn, D. (2007). Is direct instruction an answer to the right question? Educational Psychologist, 42(2), 109–113.
Article
Google Scholar
Kyun, S., Kalyuga, S., & Sweller, J. (2013). The effect of worked examples when learning to write essays in English literature. The Journal of Experimental Education, 81(3), 385–408.
Article
Google Scholar
Lavonen, J., & Laaksonen, S. (2009). Context of teaching and learning school science in Finland: Reflections on PISA 2006 results. Journal of Research in Science Teaching, 46(8), 922–944.
Article
Google Scholar
Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718.
Article
Google Scholar
Lee, H. S., & Anderson, J. R. (2013). Student learning: What has instruction got to do with it? Annual Review of Psychology, 64, 445–469.
Article
Google Scholar
Levin, J. R., & O’Donnell, A. M. (1999). What to do about educational research’s credibility gaps? Issues in Education, 5(2), 177–229.
Article
Google Scholar
Liou, P.-Y. (2020). Students' attitudes toward science and science achievement: An analysis of the differential effects of science instructional practices. Journal of Research in Science Teaching, Online First, 1–25.
Loibl, K., Roll, I., & Rummel, N. (2017). Towards a theory of when and how problem solving followed by instruction supports learning. Educational Psychology Review, 29, 693–715.
Article
Google Scholar
Loibl, K., & Rummel, N. (2014). The impact of guidance during problem-solving prior to instruction on students’ inventions and learning outcomes. Instructional Science, 42, 305–326.
Article
Google Scholar
Martin, A. J., Ginns, P., Burns, E. C., Kennett, R., & Pearson, J. (2020). Load reduction instruction in science and students’ science engagement and science achievement. Journal of Educational Psychology, Advance online publication. https://doi.org/10.1037/edu0000552
Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: Is it all in the timing? Instructional Science, 41(3), 621–634.
Article
Google Scholar
Mayer, R. E. (2003). Learning environments: The case for evidence-based practice and issue-driven research. Educational Psychology Review, 15(4), 359–366.
Article
Google Scholar
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59(1), 14–19. https://doi.org/10.1037/0003-066x.59.1.14
Article
Google Scholar
McConney, A., Oliver, M. C., Woods-McConney, A., Schibeci, R., & Maor, D. (2014). Inquiry, engagement, and literacy in science: A retrospective, cross-national analysis using PISA 2006. Science Education, 98(6), 963–980.
Article
Google Scholar
Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.
Article
Google Scholar
Mistler-Jackson, M., & Songer, N. (2000). Student motivation and Internet technology: Are students empowered to learn science? Journal of Research in Science Teaching, 37(5), 459–479.
Article
Google Scholar
Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.
Article
Google Scholar
National Academies of Sciences, Engineering, and Medicine. (2021). Call to action for science education: Building opportunity for the future. Washington, DC: The National Academies Press Retrieved from https://doi.org/10.17226/26152
National Research Council. (1996). National science education standards. National Academy Press.
Google Scholar
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press.
Google Scholar
NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press.
Google Scholar
OECD. (2016). PISA 2015 results (Volume II). Policies and Practices for Successful Schools. Paris: OECD Publishing.
Oliver, M., McConney, A., & Woods-McConney, A. (2019). The efficacy of inquiry-based instruction in science: A comparative analysis of six countries using PISA 2015. Research in Science Education. https://doi.org/10.1007/s11165-019-09901-0
Article
Google Scholar
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4.
Article
Google Scholar
Platform Onderwijs2032. (2016). Ons Onderwijs2032: Eindadvies [Our Education2032: Final advice]. The Hague, The Netherlands: Platform Onderwijs2032 Retrieved from https://curriculum.nu/wp-content/uploads/2018/05/Ons-Onderwijs2032-Eindadvies-januari-2016.pdf
Renken, M. D., & Nunez, N. (2010). Evidence for improved conclusion accuracy after reading about rather than conducting a belief-inconsistent simple physics experiment. Applied Cognitive Psychology, 24(6), 792–811.
Article
Google Scholar
Renkl, A. (2013). Why practice recommendations are important in use-inspired basic research and why too much caution is dysfunctional. Educational Psychology Review, 25(3), 317–324. https://doi.org/10.1007/s10648-013-9236-0
Article
Google Scholar
Renkl, A. (2015). Different roads lead to Rome: the case of principle-based cognitive skills. Learning: Research and Practice 1(1), 79 - 90.
Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 7(1), 1–15.
Article
Google Scholar
Robinson, D. H., Levin, J. R., Schraw, G., Patall, E. A., & Hunt, E. B. (2013). On going (way) beyond one’s data: A proposal to restrict recommendations for practice in primary educational research journals. Educational Psychology Review, 25(2), 291–302.
Article
Google Scholar
Roussel, S., Joulia, D., Tricot, A., & e., & Sweller, J. (2017). Learning subject content through a foreign language should not ignore human cognitive architecture: A cognitive load theory approach. Learning and Instruction, 52, 69–79.
Article
Google Scholar
Schmidt, H. G., Loyens, S. M. M., Gog, T., & v., & Paas, F. (2007). Problem-based learning is compatible with human cognitive architecture: Commentary on Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 91–97.
Article
Google Scholar
Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184.
Article
Google Scholar
Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39, 37–63.
Article
Google Scholar
Shaffer, D. W. (2004). Pedagogical praxis: The professions as models for postindustrial education. Teachers College Record, 106(7).
Shavelson, R. J., & Towne, L. (2002). Scientific Research in Education. National Academy Press.
Google Scholar
Slavin, R. E. (2002). Evidence-based education policies: Transforming educational practice and research. Educational Researcher, 31(7), 15–21.
Article
Google Scholar
Songer, N. B., Lee, H.-S., & Kam, R. (2002). Technology-rich inquiry science in urban classrooms: What are the barriers to inquiry pedagogy? Journal of Research in Science Teaching, 39(2), 128–150.
Article
Google Scholar
Songer, N. B., Lee, H.-S., & McDonald, S. (2003). Research towards an expanded understanding of inquiry science beyond one idealized standard. Science Education, 87(4), 490–516.
Article
Google Scholar
Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing: Three experimental comparisons of learner-generated versus author-provided graphic organizers. Journal of Educational Psychology, 99(4), 808–820.
Article
Google Scholar
Sweller, J. (2009). What human cognitive architecture tells us about constructivism. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 127–143). Routledge.
Google Scholar
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer.
Book
Google Scholar
Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching techniques do not work: A reply to commentaries. Educational Psychologist, 42(2), 115–121.
Article
Google Scholar
Sweller, J., van Merriënboer, J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31, 261–292.
Article
Google Scholar
Taylor, J., Furtak, E., Kowalski, S., Martinez, A., Slavin, R., Stuhlsatz, M., & Wilson, C. (2016). Emergent themes fromrecent research syntheses in science education and their implications for research design, replication, and reporting practices. Journal of Research in Science Teaching, 53(8), 1216–1231.
Article
Google Scholar
Teig, N., Scherer, R., & Nilsen, T. (2018). More isn’t always better: The curvilinear relationship between inquiry-based teaching and student achievement in science. Learning and Instruction, 56, 20–29.
Article
Google Scholar
Tobias, S., & Duffy, T. M. (Eds.). (2009). The success or failure of constructivist instruction. Routledge.
Google Scholar
Tuovinen, J. E., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and worked examples. Journal of Educational Psychology, 91(2), 334–341.
Article
Google Scholar
van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3), 212–218.
Article
Google Scholar
Weaver, J. P., Chastain, R. J., DeCaro, D. A., & DeCaro, M. S. (2018). Reverse the routine: Problem solving before instruction improves conceptual knowledge in undergraduate physics. Contemporary Educational Psychology, 52, 36–47.
Article
Google Scholar
Wecker, C. (2013). How to support prescriptive statements by empirical research: Some missing parts. Educational Psychology Review, 25(1), 1–18. https://doi.org/10.1007/s10648-012-9208-9
Article
Google Scholar
Whitehurst, G. J. (2002). Evidence-based education. Paper presented at the Student Achievement and School Accountability Conference.
Whitehurst, G. J. (2003). The Institute of Education Sciences: New wine, new bottles. Paper presented at the 2003 American Educational Research Association Annual Meeting Presidential Invited Session.
Williams, M., & Linn, M. C. (2002). WISE inquiry in fifth grade biology. Research in Science Education, 32, 415–436.
Article
Google Scholar
Zhang, L. (2016). Is inquiry-based science teaching worth the effort? Some thoughts worth considering. Science & Education, 25(7), 897–915.
Article
Google Scholar
Zhang, L. (2018). Withholding answers during hands-on scientific investigations? Comparing effects on developing students’ scientific knowledge, reasoning, and application. International Journal of Science Education, 40(4), 459–469. https://doi.org/10.1080/09500693.2018.1429692
Article
Google Scholar
Zhang, L. (2019). “Hands-on” plus “inquiry”? Effects of withholding answers coupled with physical manipulations on students’ learning of energy-related science concepts. Learning and Instruction, 60, 199–205. https://doi.org/10.1016/j.learninstruc.2018.01.001
Article
Google Scholar
Zhang, L., & Li, Z. (2019). How does inquiry-based scientific investigation relate to the development of students’ science knowledge, knowing, applying, and reasoning? An examination of TIMSS data. Canadian Journal of Science, Mathematics and Technology Education, 19(3), 334–345. https://doi.org/10.1007/s42330-019-00055-9
Article
Google Scholar