Skip to main content
Log in

Cognitive Load Theory and Human Movement: Towards an Integrated Model of Working Memory

  • REVIEW ARTICLE
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Cognitive load theory (CLT) applies what is known about human cognitive architecture to the study of learning and instruction, to generate insights into the characteristics and conditions of effective instruction and learning. Recent developments in CLT suggest that the human motor system plays an important role in cognition and learning; however, it is unclear whether models of working memory (WM) that are typically espoused by CLT researchers can reconcile these novel findings. For instance, often-cited WM models envision separate information processing systems—such as Baddeley and Hitch’s (1974) multicomponent model of WM—as a means to interpret modality-specific findings, although possible interactions with the human motor system remain under-explained. In this article, we examine the viability of these models to theoretically integrate recent research findings regarding the human motor system, as well as their ability to explain established CLT effects and other findings. We argue, it is important to explore alternate models of WM that focus on a single and integrated control of attention system that is applied to visual, phonological, embodied, and other sensory and nonsensory information. An integrated model such as this may better account for individual differences in experience and expertise and, parsimoniously, explain both recent and historical CLT findings across domains. To advance this aim, we propose an integrated model of WM that envisions a common and finite attentional resource that can be distributed across multiple modalities. How attention is mobilized and distributed across domains is interdependent, co-reinforcing, and ever-changing based on learners’ prior experience and their immediate cognitive demands. As a consequence, the distribution of attentional focus and WM resources will vary across individuals and tasks, depending on the nature of the specific task being performed; the neurological, developmental, and experiential abilities of the individual; and the current availability of internal and external cognitive resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agostinho, S., Tindall-Ford, S., Ginns, P., Howard, S. J., Leahy, W., & Paas, F. (2015). Giving learning a helping hand: finger tracing of temperature graphs on an iPad. Educational Psychology Review, 27(3), 427–443. https://doi.org/10.1007/s10648-015-9315-5.

    Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: a proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). London: Academic.

    Google Scholar 

  • Ayres, P. L. (1993). Why goal-free problems can facilitate learning. Contemporary Educational Psychology, 18(3), 376–381. https://doi.org/10.1006/ceps.1993.1027.

    Google Scholar 

  • Ayres, P., Marcus, N., Chan, C., & Qian, N. (2009). Learning hand manipulative tasks: when instructional animations are superior to equivalent static representations. Computers in Human Behavior, 25(2), 348–353. https://doi.org/10.1016/j.chb.2008.12.013.

    Google Scholar 

  • Ayres, P., & Sweller, J. (1990). Locus of difficulty in multi-stage mathematics problems (Ph.D. thesis). The American Journal of Psychology, 103(2), 167–193.

    Google Scholar 

  • Baddeley, A. D. (1983). Working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 302(1110), 311–324. https://doi.org/10.1098/rstb.1983.0057.

    Google Scholar 

  • Baddeley, A. D. (1986). Working memory (p. 1986). Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556–559. https://doi.org/10.1126/science.1736359.

    Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. https://doi.org/10.1016/S1364-6613(00)01538-2.

    Google Scholar 

  • Baddeley, A. D. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201.

    Google Scholar 

  • Baddeley, A. D. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422.

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: advances in research and theory (Vol. 8, pp. 47–89). New York: Academic.

    Google Scholar 

  • Baddeley, A. D., & Lieberman, K. (1980). Spatial working memory. In R. S. Nickerson (Ed.), Attention and performance VIII (pp. 521–539). Hillsdale: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660.

    Google Scholar 

  • Bauhoff, V., Huff, M., & Schwan, S. (2012). Distance matters: spatial contiguity effects as trade-off between gaze switches and memory load. Applied Cognitive Psychology, 26(6), 863–871. https://doi.org/10.1002/acp.2887.

    Google Scholar 

  • Broadbent, D. E. (1958). Perception and Communication. New York: Pergamon.

  • Broadbent, D. E. (1982). Task combination and selective intake of information. Acta Psychologica, 50(3), 253–290.

    Google Scholar 

  • Brucker, B., Ehlis, A.-C., Häußinger, F. B., Fallgatter, A. J., & Gerjets, P. (2015). Watching corresponding gestures facilitates learning with animations by activating human mirror-neurons. An fNIRS study, 36(C), 27–37. https://doi.org/10.1016/j.learninstruc.2014.11.003.

    Google Scholar 

  • Castro-Alonso, J. C., Ayres, P., & Paas, F. (2014). Learning from observing hands in static and animated versions of non-manipulative tasks. Learning and Instruction, 34, 11–22.

    Google Scholar 

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332. https://doi.org/10.1207/s1532690xci0804_2.

  • Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233–246. https://doi.org/10.1111/j.2044-8279.1992.tb01017.x.

    Google Scholar 

  • Chen, O., Castro-Alonso, J. C., Paas, F., & Sweller, J. (2017). Extending cognitive load theory to incorporate working memory resource depletion: evidence from the spacing effect. Educational Psychology Review, 61(2), 1–19. https://doi.org/10.1007/s10648-017-9426-2.

    Google Scholar 

  • Choi, H. H., Van Merrienboer, J. J. G., & Paas, F. (2014). Effects of the physical environment on cognitive load and learning: towards a new model of cognitive load. Educational Psychology Review, 26(2), 225–244.

    Google Scholar 

  • Chu, M., & Kita, S. (2008). Spontaneous gestures during mental rotation tasks: insights into the microdevelopment of the motor strategy. Journal of Experimental Psychology: General, 137(4), 706–723. https://doi.org/10.1037/a0013157.

    Google Scholar 

  • Chu, M., Meyer, A., Foulkes, L., & Kita, S. (2013). Individual differences in frequency and saliency of speech-accompanying gestures: the role of cognitive abilities and empathy. Journal of Experimental Psychology: General, 143, 694–709. https://doi.org/10.1037/a0033861.supp.

    Google Scholar 

  • Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210.

    Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: a methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772.

    Google Scholar 

  • Cook, S. W., Duffy, R. G., & Fenn, K. M. (2013). Consolidation and transfer of learning after observing hand gesture. Child Development, 84(6), 1863–1871. https://doi.org/10.1111/cdev.12097.

    Google Scholar 

  • Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058. https://doi.org/10.1016/j.cognition.2007.04.010.

    Google Scholar 

  • Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2012). Gestures, but not meaningless movements, lighten working memory load when explaining math. Language and Cognitive Processes, 27(4), 594–610. https://doi.org/10.1080/01690965.2011.567074.

    Google Scholar 

  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.

    Google Scholar 

  • Cowan, N. (1995). Attention and memory: an integrated framework. New York: Oxford University Press; Oxford: Clarendon, 1995.

  • Cowan, N. (2000). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–185.

    Google Scholar 

  • Cowan, N. (2010). The magical mystery four. Current Directions in Psychological Science, 19(1), 51–57. https://doi.org/10.1177/0963721409359277.

    Google Scholar 

  • Cumming, C. E., & Rodda, M. (1985). The effects of auditory deprivation on successive processing. Canadian Journal of Behavioural Science / Revue Canadienne des Sciences du Comportement, 17(3), 232–245.

    Google Scholar 

  • Delaney, P. F., Verkoeijen, P. P. J. L., & Spirgel, A. (2010). Spacing and testing effects: a deeply critical, lengthy, and at times discursive review of the literature. In B. H. Ross (Ed.), The psychology of learning and motivation: advances in research and theory (Vol. 53, pp. 63–147). New York: Academic. https://doi.org/10.1016/S0079-7421(10)53003-2.

    Google Scholar 

  • De Groot, A. (1965). Thought and choice in chess. The Hague: Mouton. Original work published 1946.

  • De Koning, B., & Tabbers, H. K. (2013). Gestures in instructional animations: a helping hand to understanding non-human movements? Applied Cognitive Psychology, 27, 683–689.

    Google Scholar 

  • Ebbinghaus, H. (1885/1964). Memory: a contribution to experimental psychology. Oxford: Dover.

  • Engelkamp, J. (1995). Visual imagery and enactment of actions in memory. British Journal of Psychology, 86(2), 227–240. https://doi.org/10.1111/j.2044-8295.1995.tb02558.x.

    Google Scholar 

  • Engelkamp, J., Seiler, K. H., & Zimmer, H. D. (2005). Differential relational encoding of categorical information in memory for action events. Memory & Cognition, 33(3), 371–389.

    Google Scholar 

  • Engelkamp, J., Zimmer, H. D., Mohr, G., & Sellen, O. (1994). Memory of self-performed tasks: self-performing during recognition. Memory & Cognition, 22(1), 34–39. https://doi.org/10.3758/BF03202759.

    Google Scholar 

  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. https://doi.org/10.1111/1467-8721.00160.

    Google Scholar 

  • Florax, M., & Ploetzner, R. (2010). What contributes to the split-attention effect? The role of text segmentation, picture labelling, and spatial proximity. Learning and Instruction, 20(3), 216–224. https://doi.org/10.1016/j.learninstruc.2009.02.021.

    Google Scholar 

  • Foglia, L., & Wilson, R. A. (2013). Embodied cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 4(3), 319–325.

    Google Scholar 

  • Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15(4), 313–331. https://doi.org/10.1016/j.learninstruc.2005.07.001.

    Google Scholar 

  • Ginns, P. (2006). Integrating information: a meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16(6), 511–525. https://doi.org/10.1016/j.learninstruc.2006.10.001.

    Google Scholar 

  • Gluckman, M., Vlach, H. A., & Sandhofer, C. M. (2014). Spacing simultaneously promotes multiple forms of learning in children’s science curriculum. Applied Cognitive Psychology, 28(2), 266–273. https://doi.org/10.1002/acp.2997.

    Google Scholar 

  • Goldin-Meadow, S. (2009). How gesture promotes learning throughout childhood. Child Development Perspectives, 3(2), 106–111.

    Google Scholar 

  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272. https://doi.org/10.1086/659964?ref=search-gateway:4d5c7866182d0f01d9bef79f563ad121.

    Google Scholar 

  • Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: gesturing lightens the load. Psychological Science, 12(6), 516–522.

    Google Scholar 

  • Healey, M. K., Hasher, L., & Danilova, E. (2011). The stability of working memory: do previous tasks influence complex span? Journal of Experimental Psychology: General, 140, 573–585. https://doi.org/10.1037/a0024587.

  • Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: individual differences in visual attention control. Journal of Experimental Psychology: General, 136(2), 217–240. https://doi.org/10.1037/0096-3445.136.2.217.

    Google Scholar 

  • Hu, F. T., Ginns, P., & Bobis, J. (2014). Does tracing worked examples enhance geometry learning? Australian Journal of Educational Developmental Psychology, 14, 45–49.

    Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P. A., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31. https://doi.org/10.1207/S15326985EP3801_4.

    Google Scholar 

  • Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 25(S1), 123–S144. https://doi.org/10.1002/acp.1773.

    Google Scholar 

  • Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169–183. https://doi.org/10.1037//0096-3445.130.2.169.

    Google Scholar 

  • Kapler, I. V., Weston, T., & Wiseheart, M. (2015). Spacing in a simulated undergraduate classroom: long-term benefits for factual and higher-level learning. Learning and Instruction, 36, 38–45. https://doi.org/10.1016/j.learninstruc.2014.11.001.

    Google Scholar 

  • Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803–831.

    Google Scholar 

  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: a meta-analysis. Learning an Instruction, 17(6), 722–738.

    Google Scholar 

  • Holsanova, J., Holmberg, N., & Holmqvist, K. (2009). Reading information graphics: the role of spatial contiguity and dual attentional guidance. Applied Cognitive Psychology, 23(9), 1215–1226. https://doi.org/10.1002/acp.1525.

    Google Scholar 

  • Juan Pascual-Leone, (1970) A mathematical model for the transition rule in Piaget's developmental stages. Acta Psychologica, 32 301–345

  • Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology: Applied, 18(2), 178–191. https://doi.org/10.1037/a0026923.

    Google Scholar 

  • Low, R., & Sweller, J. (2005). The modality principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 147–158). New York: Cambridge University Press.

    Google Scholar 

  • Macedonia, M., & Klimesch, W. (2014). Long-term effects of gestures on memory for foreign language words trained in the classroom. Mind, Brain, and Education, 8(2), 74–88.

    Google Scholar 

  • Mavilidi, M. F., Okely, A. D., Chandler, P. A., Cliff, D. P., & Paas, F. (2015). Effects of integrated physical exercises and gestures on preschool children’s foreign language vocabulary learning. Educational Psychology Review, 27(3), 413–426. https://doi.org/10.1007/s10648-015-9337-z.

    Google Scholar 

  • Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1–19.

    Google Scholar 

  • Mayer, R. E. (2001). Multimedia learning. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E. (2002). Multimedia learning. Psychology of Learning and Motivation, 41, 85–139.

    Google Scholar 

  • Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (p. 2009). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84(4), 444–452. https://doi.org/10.1037/0022-0663.84.4.444.

    Google Scholar 

  • Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312–320. https://doi.org/10.1037/0022-0663.90.2.312.

    Google Scholar 

  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52. https://doi.org/10.1207/S15326985EP3801_6.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158.

    Google Scholar 

  • Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87(2), 319–334. https://doi.org/10.1037/0022-0663.87.2.319.

    Google Scholar 

  • Novack, M., & Goldin-Meadow, S. (2015). Learning from gesture: how our hands change our minds. Educational Psychology Review, 27(3), 405–412.

    Google Scholar 

  • Novack, M., Goldin-Meadow, S., & Woodward, A. L. (2015). Learning from gesture: how early does it happen? Cognition, 142, 138–147.

    Google Scholar 

  • Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24(1), 27–45.

    Google Scholar 

  • Paivio, A., & Okovita, H. W. (1971). Word imagery modalities and associative learning in blind and sighted subjects. Journal of Verbal Learning and Verbal Behavior, 10(5), 506–510.

    Google Scholar 

  • Pascual-Leone, J., & Baillargeon, R. (1994). Developmental measurement of mental attention. International Journal of Behavioral Development, 17(1), 161–200. https://doi.org/10.1177/016502549401700110.

    Google Scholar 

  • Pascual-Leone, J., & Smith, J. (1969). The encoding and decoding of symbols by children: a new experimental paradigm and a neo-Piagetian model. Journal of Experimental Child Psychology, 8(2), 328–355. https://doi.org/10.1016/0022-0965(69)90107-6.

    Google Scholar 

  • Penney, C. G. (1989). Modality effects and the structure of short-term verbal memory. Memory & Cognition, 17(4), 398–422. https://doi.org/10.3758/BF03202613.

    Google Scholar 

  • Ping, R., & Goldin-Meadow, S. (2010). Gesturing saves cognitive resources when talking about nonpresent objects. Cognitive Science, 34(4), 602–619.

    Google Scholar 

  • Pouw, W., Mavilidi, M.-F., Van Gog, T., & Paas, F. (2016). Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity. Cognitive Processing, 17(3), 269–277. https://doi.org/10.1007/s10339-016-0757-6.

    Google Scholar 

  • Pouw, W. T. J. L., de Nooijer, J. A., Van Gog, T., Zwaan, R. A. & Paas, F. (2014a). Toward a more embedded/extended perspective on the cognitive function of gestures. Frontiers in Psychology, 5, 1–14. https://doi.org/10.3389/fpsyg.2014.00359.

    Google Scholar 

  • Pouw, W., Van Gog, T., & Paas, F. (2014b). An embedded and embodied cognition review of instructional manipulatives. Educational Psychology Review, 26(1), 51–72.

    Google Scholar 

  • Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. Trends in Cognitive Sciences, 20(9), 676–688. https://doi.org/10.1016/j.tics.2016.07.002.

    Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27(1), 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230.

    Google Scholar 

  • Rhodes, G. (1987). Auditory attention and the representation of spatial information. Perception & Psychophysics, 42(1), 1–14.

    Google Scholar 

  • Rudner, M., Andin, J., & Rönnberg, J. (2009). Working memory, deafness and sign language. Scandinavian Journal of Psychology, 50(5), 495–505. https://doi.org/10.1111/j.1467-9450.2009.00744.x.

    Google Scholar 

  • Rummer, R., Schweppe, J., Fürstenberg, A., Seufert, T., & Brünken, R. (2010). Working memory interference during processing texts and pictures: implications for the explanation of the modality effect. Applied Cognitive Psychology, 24(2), 164–176. https://doi.org/10.1002/acp.1546.

    Google Scholar 

  • Rummer, R., Schweppe, J., Fürstenberg, A., Scheiter, K., & Zindler, A. (2011). The perceptual basis of the modality effect in multimedia learning. Journal of Experimental Psychology: Applied, 17(2), 159–173. https://doi.org/10.1037/a0023588.

    Google Scholar 

  • Schmalenbach, S. B., Billino, J., Kircher, T., van Kemenade, B. M., & Straube, B. (2017). Links between gestures and multisensory processing: individual differences suggest a compensation mechanism. Frontiers in Psychology, 8, 635–638. https://doi.org/10.3389/fpsyg.2017.01828.

    Google Scholar 

  • Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136(2), 241–255. https://doi.org/10.1037/0096-3445.136.2.241.

    Google Scholar 

  • Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). Explaining the modality and contiguity effects: new insights from investigating students’ viewing behaviour. Applied Cognitive Psychology, 24(2), 226–237. https://doi.org/10.1002/acp.1554.

    Google Scholar 

  • Schroeder, N. L., & Cenkci, A. T. (2018). Spatial contiguity and spatial split-attention effects in multimedia learning environments: a meta-analysis. Educational Psychology Review, 30(3), 679–701.

    Google Scholar 

  • Skulmowski, A., Pradel, S., Kühnert, T., Brunnett, G., & Rey, G. D. (2016). Embodied learning using a tangible user interface: the effects of haptic perception and selective pointing on a spatial learning task. Computers & Education, 92-93(c), 64–75. https://doi.org/10.1016/j.compedu.2015.10.011.

    Google Scholar 

  • Skulmowski, A., & Rey, G. D. (2017). Measuring cognitive load in embodied learning settings. Frontiers in Psychology, 8, 1–6. https://doi.org/10.3389/fpsyg.2017.01191.

    Google Scholar 

  • Smith, D., Davis, B., Niu, K., Healy, E., Bonilha, L., Fridriksson, J., Morgan, P. S., & Rorden, C. (2009). Spatial attention evokes similar activation patterns for visual and auditory stimuli. Journal of Cognitive Neuroscience, 22, 347–361.

    Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4.

    Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer Science & Business Media.

    Google Scholar 

  • Sweller, J., & Chandler, P. A. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332. https://doi.org/10.1207/s1532690xci0804_2.

    Google Scholar 

  • Sweller, J., Levine, M., 1982. (1982). Effects of goal specificity on means–ends analysis and learning. Journal of Experimental Psychology, 8(5), 463–474.

  • Sweller, J., Van Merrienboer, J. J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Google Scholar 

  • Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3, 257–287.

    Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154.

    Google Scholar 

  • Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. Psychological Bulletin, 114(1), 104–132. https://doi.org/10.1037/0033-295X.114.1.104.

  • Van Gog, T., Paas, F., Marcus, N., Ayres, P., & Sweller, J. (2009). The mirror neuron system and observational learning: implications for the effectiveness of dynamic visualizations. Educational Psychology Review, 21, 21–30.

    Google Scholar 

  • Wilson, M. (2001). The case for sensorimotor coding in working memory. Psychonomic Bulletin & Review, 8(1), 44–57.

    Google Scholar 

  • Wilson, M., & Emmorey, K. (1997). A visuospatial “phonological loop” in working memory: evidence from American Sign Language. Memory & Cognition, 25(3), 313–320. https://doi.org/10.3758/BF03211287.

    Google Scholar 

  • Wilson, M., & Emmorey, K. (2003). The effect of irrelevant visual input on working memory for sign language. Journal of Deaf Studies and Deaf Education, 8(2), 97–103.

    Google Scholar 

  • Wong, A., Marcus, N., Ayres, P., Smith, L., Cooper, G. A., Paas, F., & Sweller, J. (2009). Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior, 25(2), 339–347. https://doi.org/10.1016/j.chb.2008.12.012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoo Sepp.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepp, S., Howard, S.J., Tindall-Ford, S. et al. Cognitive Load Theory and Human Movement: Towards an Integrated Model of Working Memory. Educ Psychol Rev 31, 293–317 (2019). https://doi.org/10.1007/s10648-019-09461-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-019-09461-9

Keywords

Navigation