Skip to main content

A Meta-analysis of the Segmenting Effect

Abstract

The segmenting effect states that people learn better when multimedia instructions are presented in (meaningful and coherent) learner-paced segments, rather than as continuous units. This meta-analysis contains 56 investigations including 88 pairwise comparisons and reveals a significant segmenting effect with small to medium effects for retention and transfer performance. Segmentation also reduces the overall cognitive load and increases learning time. These four effects are confirmed for a system-paced segmentation. The meta-analysis tests different explanations for the segmenting effect that concern facilitating chunking and structuring due to segmenting the multimedia instruction by the instructional designer, providing more time for processing the instruction and allowing the learners to adapt the presentation pace to their individual needs. Moderation analyses indicate that learners with high prior knowledge benefitted more from segmenting instructional material than learners with no or low prior knowledge in terms of retention performance.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., et al. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman.

    Google Scholar 

  2. Antonenko, P., Paas, F., Grabner, R., & Van Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22(4), 425–438.

    Article  Google Scholar 

  3. Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556–559.

    Article  Google Scholar 

  4. Baddeley, A. D. (1999). Human memory. Boston: Allyn & Bacon.

    Google Scholar 

  5. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.

    Article  Google Scholar 

  6. Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088–1101.

    Article  Google Scholar 

  7. Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives. The classification of educational goals, handbook I: cognitive domain. New York: Longmans Green.

    Google Scholar 

  8. Bloom, B. S., Madaus, G. F., & Hastings, J. T. (1981). Evaluation to improve learning. New York: McGraw-Hill.

    Google Scholar 

  9. Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233–246.

    Article  Google Scholar 

  10. Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S. Z., Khawaji, A., & Conway, D. (2016). Robust multimodal cognitive load measurement. Cham: Springer International Publishing.

    Book  Google Scholar 

  11. Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210.

    Article  Google Scholar 

  12. Cook, A. E., & Wei, W. (2017). Using eye movements to study reading processes: methodological considerations. In C. A. Was, F. J. Sansoit, & B. J. Morris (Eds.), Eye tracking technology applications in educational research (pp. 27–47). Hershey: IGI Global.

    Chapter  Google Scholar 

  13. Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York: Russell Sage Foundation.

  14. DeStefano, D., & LeFevre, J.-A. (2007). Cognitive load in hypertext reading: a review. Computers in Human Behavior, 23(3), 1616–1641.

    Article  Google Scholar 

  15. Evans, C., & Gibbons, N. J. (2007). The interactivity effect in multimedia learning. Computers & Education, 49(4), 1147–1160.

  16. Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63(3), 665–694.

    Article  Google Scholar 

  17. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15(4), 313–331.

    Article  Google Scholar 

  18. Ginns, P. (2006). Integrating information: a meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16(6), 511–525.

    Article  Google Scholar 

  19. Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11, 1–21.

  20. Hattie, J. (2009). Visible learning: a synthesis of over 800 meta-analyses relating to achievement. London: Routledge.

    Google Scholar 

  21. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando: Academic.

    Google Scholar 

  22. Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3(4), 486–504.

    Article  Google Scholar 

  23. Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65.

    Article  Google Scholar 

  24. Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (Eds.). (1983). Understanding robust and exploratory data analysis (Vol. 3). New York: Wiley.

  25. IBM Corp. (2017). IBM SPSS statistics for Windows (version 25.0). Armonk: IBM Corp.

    Google Scholar 

  26. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19(4), 509–539.

    Article  Google Scholar 

  27. Kalyuga, S. (2009). Knowledge elaboration: a cognitive load perspective. Learning and Instruction, 19(5), 402–410.

    Article  Google Scholar 

  28. Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications: introduction to the special issue. Instructional Science, 38(3), 209–215.

    Article  Google Scholar 

  29. Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13(4), 351–371.

    Article  Google Scholar 

  30. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23–31.

    Article  Google Scholar 

  31. Keehner, M., Hegarty, M., Cohen, C., Khooshabeh, P., & Montello, D. R. (2008). Spatial reasoning with external visualizations: what matters is what you see, not whether you interact. Cognitive Science, 32(7), 1099–1132.

    Article  Google Scholar 

  32. Khooshabeh, P., & Hegarty, M. (2010). Inferring cross-sections: when internal visualizations are more important than properties of external visualizations. Human Computer Interaction, 25(2), 119–147.

    Article  Google Scholar 

  33. Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2), 72–79.

    Article  Google Scholar 

  34. Lawless, K. A., & Brown, S. W. (1997). Multimedia learning environments: issues of learner control and navigation. Instructional Science, 25(2), 117–131.

    Article  Google Scholar 

  35. Lipsey, M. W., & Wilson, D. B. (2001). Applied social research methods series; vol. 49. Practical meta-analysis. Thousand Oaks: Sage.

    Google Scholar 

  36. Mayer, R. E. (1997). Multimedia learning: are we asking the right questions? Educational Psychologist, 32(1), 1–19.

    Article  Google Scholar 

  37. Mayer, R. E. (2014a). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). Cambridge: Cambridge University Press.

  38. Mayer, R. E. (2014b). Introduction to multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 1–24). Cambridge: Cambridge University Press.

  39. Mayer, R. E., & Pilegard, C. (2014). Principles for managing essential processing in multimedia learning: segmenting, pre-training, and modality principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 316–344). Cambridge: Cambridge University Press.

  40. Mayer, R. E., Moreno, R., Boire, M., & Vagge, S. (1999). Maximizing constructivist learning from multimedia communications by minimizing cognitive load. Journal of Educational Psychology, 91(4), 638–643.

    Article  Google Scholar 

  41. Mura, K., Petersen, N., Huff, M., & Ghose, T. (2013). IBES: a tool for creating instructions based on event segmentation. Frontiers in Psychology, 4(994). https://doi.org/10.3389/fpsyg.2013.00994

  42. Oksa, A., Kalyuga, S., & Chandler, P. (2010). Expertise reversal effect in using explanatory notes for readers of Shakespearean text. Instructional Science, 38(3), 217–236.

    Article  Google Scholar 

  43. Paas, F. (1992). Training strategies for attaining transfer of problem solving skill in statistics: a cognitive-load approach. Journal of Educational Psychology, 84(4), 429–434.

    Article  Google Scholar 

  44. Paivio, A. (1986). Mental representations: a dual coding approach. New York: Oxford University Press.

    Google Scholar 

  45. Rustenbach, S. J. (2003). Metaanalyse: Eine anwendungsorientierte Einführung. Bern: Huber.

    Google Scholar 

  46. Scharinger, C., Kammerer, Y., & Gerjets, P. (2015). Pupil dilation and EEG alpha frequency band power reveal load on executive functions for link-selection processes during text reading. PLoS One, 10(6), e0130608.

    Article  Google Scholar 

  47. Scheiter, K., & Gerjets, P. (2007). Learner control in hypermedia environments. Educational Psychology Review, 19(3), 285–307.

    Article  Google Scholar 

  48. Schneider, S., Beege, M., Nebel, S., & Rey, G. D. (2018a). A meta-analysis of how signaling affects learning with media. Educational Research Review, 23, 1–24.

    Article  Google Scholar 

  49. Schneider, S., Wirzberger, M., & Rey, G. D. (2018b). The moderating role of arousal on the seductive detail effect. Applied Cognitive Psychology. https://doi.org/10.1002/acp.3473.

  50. Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469–508.

    Article  Google Scholar 

  51. Schnotz, W., & Lowe, R. (2008). A unified view of learning from animated and static graphics. In R. Lowe & W. Schnotz (Eds.), Learning with animations: research implications for design (pp. 304–356). New York: Cambridge University Press.

    Google Scholar 

  52. Skuballa, I. T., Schwonke, R., & Renkl, A. (2012). Learning from narrated animations with different support procedures: working memory capacity matters. Applied Cognitive Psychology, 26(6), 840–847.

    Article  Google Scholar 

  53. Spanjers, I. A. E., Van Gog, T., & Van Merrienboer, J. J. G. (2010). A theoretical analysis of how segmentation of dynamic visualizations optimizes students' learning. Educational Psychology Review, 22(4), 411–423.

    Article  Google Scholar 

  54. Sterne, J. A., Becker, B. J., & Egger, M. (2005). The funnel plot. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: prevention, assessment and adjustments (pp. 75–98). West Sussex: Wiley.

    Google Scholar 

  55. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12(2), 257–285.

    Article  Google Scholar 

  56. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  57. Tobias, S. (1976). Achievement treatment interactions. Review of Educational Research, 46(1), 61–74.

    Article  Google Scholar 

  58. Vygotski, L. S. (1963). Learning and mental development at school age. In B. Simon & J. Simon (Eds.), Educational psychology in the U.S.S.R (pp. 21–34). London: Routledge & Kegan Paul.

    Google Scholar 

  59. Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2013). Engineering psychology and human performance (4th ed.). Boston: Pearson Education.

    Google Scholar 

  60. Wilson, D. B. (2001). Practical meta-analysis effect size calculator. Retrieved from http://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD1.php. Accessed 07/06/2018

  61. Wilson, D. B. (2010). Meta-analysis macros for SAS, SPSS, and Stata. Retrieved from http://mason.gmu.edu/~dwilsonb/ma.html

  62. Wirzberger, M., Herms, R., Esmaeili Bijarsari, S., Eibl, M., & Rey, G. D. (2018). Schema-related cognitive load influences performance, speech, and physiology in a dual-task setting: a continuous multi-measure approach. Cognitive Research: Principles and Implications, 3, 46. https://rdcu.be/bcXiM.

  63. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: a mind–brain perspective. Psychological Bulletin, 133(2), 273–293.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Günter Daniel Rey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(DOCX 21 kb)

ESM 4

(DOCX 21 kb)

ESM 5

(DOCX 19.5 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rey, G.D., Beege, M., Nebel, S. et al. A Meta-analysis of the Segmenting Effect. Educ Psychol Rev 31, 389–419 (2019). https://doi.org/10.1007/s10648-018-9456-4

Download citation

Keywords

  • Multimedia learning
  • Cognitive theory of multimedia learning
  • Segmenting effect
  • Interactivity
  • Learner control