Skip to main content
Log in

Relational Reasoning in Science, Medicine, and Engineering

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

This review brings together the literature that pertains to the role of relational reasoning, or the ability to discern meaningful patterns within any stream of information, in the mental work of scientists, medical doctors, and engineers. Existing studies that measure four forms of relational reasoning—analogy, anomaly, antinomy, and antithesis—are included in this review. These studies are organized into four groups based on their general measurement paradigm: those that use naturalistic observation methods to study relational reasoning in vivo; those that take a historical perspective to describe the construct as it arises in recordo; those that manipulate relevant variables in an in vitro or laboratory setting; and those that formulate computer models and algorithms to simulate relational reasoning in silico. Principal findings from this literature are presented and discussed, as are enduring questions about the nature and consequences of relational reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, P. A. (2003). The development of expertise: the journey from acclimation to proficiency. Educational Researcher, 32(8), 10–14. doi:10.3102/0013189X032008010.

    Article  Google Scholar 

  • Alexander, P. A., & The Disciplined Reading and Learning Research Laboratory. (2012). Reading into the future: competence for the 21st century. Educational Psychologist, 47(4), 259–280. doi:10.1080/00461520.2012.722511.

    Article  Google Scholar 

  • Alexander, P. A., White, C. S., & Mangano, N. (1983). Examining the effects of direct instruction in analogical reasoning on reading comprehension. In J. A. Niles & L. A. Harris (Eds.), Searches in meaning in reading/language processing and instruction: thirty-second yearbook of the national reading conference (pp. 36–41). Rochester, NY: National Reading Conference.

    Google Scholar 

  • Alexander, P. A., White, C. S., Haensly, P. A., & Crimmins-Jeanes, M. (1987). Training in analogical reasoning. American Educational Research Journal, 24(3), 387–404. doi:10.3102/00028312024003387.

    Article  Google Scholar 

  • Alexander, P. A., Pate, P. E., Kulikowich, J. M., Farrell, D. M., & Wright, N. L. (1989). Domain-specific and strategic knowledge: effects of training on students of differing ages or competence levels. Learning and Individual Differences, 1, 283–325.

    Article  Google Scholar 

  • Alexander, P. A., Dumas, D., Grossnickle, E. M., List, A., & Firetto, C. (2015). Measuring relational reasoning. Journal of Experimental Education, 83, 1–33.

    Article  Google Scholar 

  • Alfieri, L., Nokes-Malach, T. J., & Schunn, C. D. (2013). Learning through case comparisons: a meta-analytic review. Educational Psychologist, 48(2), 87–113. doi:10.1080/00461520.2013.775712.

    Article  Google Scholar 

  • Baker, S. T., Friedman, O., & Leslie, A. M. (2010). The opposites task: Using general rules to test cognitive flexibility in preschoolers. Journal of Cognition and Development, 11(2), 240–254. doi:10.1080/15248371003699944.

    Article  Google Scholar 

  • Baldo, J. V., Bunge, S. A., Wilson, S. M., & Dronkers, N. F. (2010). Is relational reasoning dependent on language? A voxel-based lesion symptom mapping study. Brain and Language, 113(2), 59–64. doi:10.1016/j.bandl.2010.01.004.

    Article  Google Scholar 

  • Bassok, M., Dunbar, K. N., & Holyoak, K. J. (2012). Introduction to the special section on the neural substrate of analogical reasoning and metaphor comprehension. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(2), 261–263.

    Article  Google Scholar 

  • Bianchi, I., Savardi, U., & Kubovy, M. (2011). Dimensions and their poles: a metric and topological approach to opposites. Language and Cognitive Processes, 26, 1232–1265. doi:10.1080/01690965.2010.520943.

    Article  Google Scholar 

  • Bradshaw, G. F. (1992). The airplane and the logic of invention. In R. N. Giere (Ed.), Cognitive models of science (pp. 239–250). St. Paul: Univ. of Minnesota Press.

    Google Scholar 

  • Broughton, S. H., Sinatra, G. M., & Reynolds, R. E. (2010). The nature of the refutation text effect: an investigation of attention allocation. The Journal of Educational Research, 103(6), 407–423. doi:10.1080/00220670903383101.

    Article  Google Scholar 

  • Burton, R. V. (1970). Validity of retrospective reports assessed by the multitrait-multimethod analysis. Developmental Psychology, 3(3, Pt.2), 1–15. doi:10.1037/h0029930.

    Article  Google Scholar 

  • Cattell, R. B. (1987). Intelligence: its structure, growth and action. New York: Elsevier.

    Google Scholar 

  • Chan, J., & Schunn, C. (2015). The impact of analogies on creative concept generation: lessons from an in vivo study in engineering design. Cognitive Science, 39(1), 126–155. doi:10.1111/cogs.12127.

    Article  Google Scholar 

  • Chan, J., Fu, K., Schunn, C., Cagan, J., Wood, K., & Kotovsky, K. (2011). On the benefits and pitfalls of analogies for innovative design: Ideation performance based on analogical distance, commonness, and modality of examples. Journal of Mechanical Design, 133(8), 081004. doi:10.1115/1.4004396.

    Article  Google Scholar 

  • Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: issues in theory and practice (pp. 3–27). Amsterdam: Kluwer.

    Chapter  Google Scholar 

  • Chi, M. T. H., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10(2-3), 249–260. doi:10.1207/s1532690xci1002&3_5.

    Article  Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: a theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49. doi:10.2307/1170558.

    Article  Google Scholar 

  • Cho, S., Holyoak, K. J., & Cannon, T. D. (2007). Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance. Memory & Cognition, 35(6), 1445–1455. doi:10.3758/BF03193614.

    Article  Google Scholar 

  • Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: the case of engineering design. Memory & Cognition, 35(1), 29–38. doi:10.3758/BF03195939.

    Article  Google Scholar 

  • Cole, M., & Wertsch, J. V. (1996). Beyond the individual-social antinomy in discussions of Piaget and Vygotsky. Human Development, 39(5), 250–256. doi:10.1159/000278475.

    Article  Google Scholar 

  • Crone, E. A., Wendelken, C., van Leijenhorst, L., Honomichl, R. D., Christoff, K., & Bunge, S. A. (2009). Neurocognitive development of relational reasoning. Developmental Science, 12(1), 55–66. doi:10.1111/j.1467-7687.2008.00743.x.

    Article  Google Scholar 

  • Cucina, J. M., Peyton, S. T., Su, C., & Byle, K. A. (2016). Role of mental abilities and mental tests in explaining high-school grades. Intelligence, 54, 90–104. doi:10.1016/j.intell.2015.11.007.

    Article  Google Scholar 

  • Dahl, D. W., & Moreau, P. (2002). The influence and value of analogical thinking during new product ideation. Journal of Marketing Research, 39(1), 47–60. doi:10.1509/jmkr.39.1.47.18930.

    Article  Google Scholar 

  • Darden, L. (2006). Reasoning in biological discoveries: essays on mechanisms, interfield relations, and anomaly resolution. Cambridge University Press.

  • Derry, S. J., Schunn, C. D., & Gernsbacher, M. A. (2014). Interdisciplinary collaboration: an emerging cognitive science. Psychology Press.

  • Devlin, B., Fienberg, S. E., Resnick, D. P., & Roeder, K. (2013). Intelligence, genes, and success: scientists respond to the bell curve. Springer Science & Business Media.

  • Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115, 1–43.

    Article  Google Scholar 

  • Dumas, D., & Schmidt, L. (2015). Relational reasoning as predictor for engineering ideation success using analogies in TRIZ. Journal of Engineering Design.

  • Dumas, D., & Alexander, P. A. (2016). Calibration of the test of relational reasoning. Psychological Assessment. http://doi.org/10.1037/pas0000267.

  • Dumas, D., & Dunbar, K. N. (2016). The creative stereotype effect. PLOS ONE, 11(2), e0142567. http://doi.org/10.1371/journal.pone.0142567.

  • Dumas, D., Alexander, P. A., & Grossnickle, E. M. (2013). Relational reasoning and its manifestations in the educational context: a systematic review of the literature. Educational Psychology Review, 25, 391–427. doi:10.1007/s10648-013-9224-4.

    Article  Google Scholar 

  • Dumas, D., Alexander, P. A., Baker, L. M., Jablansky, S., & Dunbar, K. N. (2014). Relational reasoning in medical education: patterns in discourse and diagnosis. Journal of Educational Psychology, 106, 1021–1035. doi:10.1037/a003677.

    Article  Google Scholar 

  • Dumas, D., Alexander, P. A., & Schmidt, L. (2016). Predicting creative problem-solving in mechanical engineering. Thinking Skills and Creativity, in press.

  • Dunbar, K. (1993). Concept discovery in a scientific domain. Cognitive Science, 17(3), 397–434. doi:10.1207/s15516709cog1703_3.

    Article  Google Scholar 

  • Dunbar, K. (1995). How scientists really reason: scientific reasoning in real-world laboratories. In R. J. Sternberg & J. Davidson (Eds.), The nature of insight (pp. 365–396). Cambridge MA: MIT Press.

    Google Scholar 

  • Dunbar, K. (1999). How scientists build models in vivo science as a window on the scientific mind. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 85–99). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: the case of analogy. Trends in Cognitive Sciences, 5(8), 334–339. doi:10.1016/S1364-6613(00)01698-3.

    Article  Google Scholar 

  • Dunbar, K. N., & Fugelsang, J. A. (2005). Causal thinking in science: how science and students interpret the unexpected. In M. E. Gorman, R. D. Tweney, D. C. Gooding, & A. Kincannon (Eds.), Scientific and technological thinking (pp. 57–80). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Dunbar, K. N., & Klahr, D. (2012). Scientific thinking and reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 736–754). New York: Oxford University Press.

    Google Scholar 

  • Dunbar, K. N., Fugelsang, J. A., & Stein, C. (2007). Do naïve theories ever go away? Using brain and behavior to understand changes in concepts. In M. C. Lovett & P. Shah (Eds.), Thinking with data (pp. 193–205). Mahwah: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Ehri, L. C., Satlow, E., & Gaskins, I. (2009). Grapho-phonemic enrichment strengthens keyword analogy instruction for struggling young readers. Reading and Writing Quarterly: Overcoming Learning Difficulties, 25(2-3), 162–191. doi:10.1080/10573560802683549.

    Article  Google Scholar 

  • Fales, C. L., Knowlton, B. J., Holyoak, K. J., Geschwind, D. H., Swerdloff, R. S., & Gonzalo, I. G. (2003). Working memory and relational reasoning in Klinefelter syndrome. Journal of the International Neuropsychological Society, 9(06), 839–846. doi:10.1017/S1355617703960036.

    Article  Google Scholar 

  • Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43(8), 1204–1213. doi:10.1016/j.neuropsychologia.2004.10.012.

    Article  Google Scholar 

  • Gardner, H. (1995). Perennial antinomies and perpetual redrawings: is there progress in the study of mind? In R. Solso & D. Massaro (Eds.), The science of the mind: 2001 and beyond (pp. 65–78). New York: Oxford University Press.

    Google Scholar 

  • Gentner, D., & Grudin, J. (1985). The evolution of mental metaphors in psychology: a 90-year retrospective. American Psychologist, 40(2), 181–192. doi:10.1037/0003-066X.40.2.181.

    Article  Google Scholar 

  • Gentner, D., & Jeziorski, M. (1989). Historical shifts in the use of analogy in science. In B. Gholson, W. R. J. Shadish, R. A. Neimeyer, & A. C. Houts (Eds.), Psychology of science: contributions to metascience (pp. 296–325). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Goswami, U. (2013). The development of reasoning by analogy. In P. Barrouillet & C. Gauffroy (Eds.), The development of thinking and reasoning (pp. 49–70). New York: Psychology Press.

    Google Scholar 

  • Goswami, U., & Bryant, P. (1992). Rhyme, analogy, and children’s reading. In P. B. Gough, L. C. Ehri, & R. Treiman (Eds.), Reading acquisition (pp. 49–63). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Green, A. E., Fugelsang, J. A., Kraemer, D. J. M., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096(1), 125–137. doi:10.1016/j.brainres.2006.04.024.

    Article  Google Scholar 

  • Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(2), 264–272. doi:10.1037/a0025764.

    Article  Google Scholar 

  • Greene, J. A., Murphy, P. K., Butler, A., Firetto, C. M., Allen, E., Wang, J., Oeder, C., Wei, L., & Yu, S. B. (2016). Fostering relational reasoning and scientific understanding through quality talk discourse. In D. Dumas (Ed.), The malleability of relational reasoning. Washington, DC: Symposium conducted at the annual meeting of the American Educational Research Association.

    Google Scholar 

  • Grossnickle, E. M., Dumas, D., Alexander, P. A., & Baggetta, P. (2016). Individual differences in the process of relational reasoning. Learning and Instruction, 42, 141–159. doi:10.1016/j.learninstruc.2016.01.013.

    Article  Google Scholar 

  • Hesse, M. B. (1966). Models and analogies in science (Vol. 7). Notre Dame: University of Notre Dame Press.

    Google Scholar 

  • Holmes, F. L. (1987). Lavoisier and the chemistry of life: an exploration of scientific creativity. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Holyoak, K. J. (2012). Analogy and relational reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 234–259). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Holyoak, K. J., & Thagard, P. (1995). Mental leaps: analogy in creative thought. Cambridge, MA, US: The MIT Press.

    Google Scholar 

  • Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: a theory of analogical access and mapping. Psychological Review, 104(3), 427–466. doi:10.1037/0033-295X.104.3.427.

    Article  Google Scholar 

  • Iding, M. K. (1997). How analogies foster learning from science texts. Instructional Science, 25(4), 233–253.

    Article  Google Scholar 

  • Jablansky, S., Alexander, P. A., Dumas, D., & Compton, V. (2015). Developmental differences in relational reasoning among primary and secondary school students. Journal of Educational Psychology. doi:10.1037/edu0000070.

    Google Scholar 

  • Johnson-Laird, P. N. (1989). Analogy and the exercise of creativity. Similarity and Analogical Reasoning, 313–331.

  • Johnson-Laird, P. N. (2005). Flying bicycles: how the wright brothers invented the airplane. Mind & Society, 4(1), 27–48. doi:10.1007/s11299-005-0005-8.

    Article  Google Scholar 

  • Kendeou, P., & O’Brien, N. (2015). Antithetical reasoning with refutational texts. In G. M. Sinatra (Ed.), Relational reasoning in STEM domains: what empirical research can contribute to the national dialogue. Chicago: Symposium conducted at the annual meeting of the American Educational Research Association.

    Google Scholar 

  • Klaczynski, P. A., Gordon, D. H., & Fauth, J. (1997). Goal-oriented critical reasoning and individual differences in critical reasoning biases. Journal of Educational Psychology, 89(3), 470–485. doi:10.1037/0022-0663.89.3.470.

    Article  Google Scholar 

  • Klahr, D., & Dunbar, K. (1988). The psychology of scientific discovery: search in two problem spaces. Cognitive Science, 12, 1–48.

    Article  Google Scholar 

  • Klahr, D., & Simon, H. A. (1999). Studies of scientific discovery: complementary approaches and convergent findings. Psychological Bulletin, 125(5), 524–543. doi:10.1037/0033-2909.125.5.524.

    Article  Google Scholar 

  • Knowlton, B. J., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2012). A neurocomputational system for relational reasoning. Trends in Cognitive Sciences, 16(7), 373–381. doi:10.1016/j.tics.2012.06.002.

    Article  Google Scholar 

  • Kokinov, B. N., & Petrov, A. A. (2001). Integration of memory and reasoning in analogy-making: the AMBR model. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: perspectives from cognitive science (pp. 59–124). Cambridge, MA: MIT Press.

    Google Scholar 

  • Krawczyk, D. C. (2012). The cognition and neuroscience of relational reasoning. Brain Research, 1428, 13–23. doi:10.1016/j.brainres.2010.11.080.

    Article  Google Scholar 

  • Krawczyk, D. C., McClelland, M. M., & Donovan, C. M. (2011). A hierarchy for relational reasoning in the prefrontal cortex. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 47(5), 588–597. doi:10.1016/j.cortex.2010.04.008.

    Article  Google Scholar 

  • Kuhn, T. S. (2012). The structure of scientific revolutions: 50th anniversary edition. University of Chicago Press.

  • Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking and Reasoning, 13(2), 90–104. doi:10.1080/13546780600625447.

    Article  Google Scholar 

  • Kulkarni, D., & Simon, H. A. (1988). The processes of scientific discovery: the strategy of experimentation. Cognitive Science, 12(2), 139–175. doi:10.1207/s15516709cog1202_1.

    Article  Google Scholar 

  • Kurz-Milcke, E., Nersessian, N. J., & Newstetter, W. C. (2004). What has history to do with cognition? Interactive methods for studying research laboratories. Journal of Cognition and Culture, 4(3-4), 663–700. doi:10.1163/1568537042484959.

    Article  Google Scholar 

  • Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery: computational explorations of the creative processes. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Mason, L., & Sorzio, P. (1996). Analogical reasoning in restructuring scientific knowledge. European Journal of Psychology of Education, 11(1), 3–23. doi:10.1007/BF03172933.

    Article  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.

    Article  Google Scholar 

  • Mesirov, J. P. (2010). Computer science: Accessible reproducible research. Science, 327 (5964). http://doi.org/10.1126/science.1179653

  • Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (2013). Machine learning: an artificial intelligence approach. Springer Science & Business Media.

  • Michelson, A. A., & Morley, E. (1887). On the relative motion of the Earth and the luminiferous ether. American Journal of Science, 34(203), 333–345.

    Article  Google Scholar 

  • Miller, A. I. (1975). Albert Einstein and Max Wertheimer: a Gestalt psychologist’s view of the genesis of special relativity theory. History of Science, 13(2), 75–103.

    Article  Google Scholar 

  • Murphy, P. K., Greene, J. A., Firetto, C. M., Montalbano, C., Mengyi, L., Wei, L., & Croninger, R. M. V. (2016). Promoting relational reasoning in elementary students’ writing. In D. Dumas (Ed.), The malleability of relational reasoning. Washington, DC: Symposium conducted at the annual meeting of the American Educational Research Association.

    Google Scholar 

  • Nersessian, N. (1984). Faraday to Einstein: constructing meaning in scientific theories. Springer Science & Business Media.

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • Okada, T., & Simon, H. A. (1997). Collaborative discovery in a scientific domain. Cognitive Science, 21(2), 109–146. doi:10.1016/S0364-0213(99)80020-2.

    Article  Google Scholar 

  • Otero, J. (2009). Question generation and anomaly detection in texts. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 47–59). New York: Routledge/Taylor & Francis Group.

    Google Scholar 

  • Ozkan, O., & Dogan, F. (2013). Cognitive strategies of analogical reasoning in design: differences between expert and novice designers. Design Studies, 34(2), 161–192. doi:10.1016/j.destud.2012.11.006.

    Article  Google Scholar 

  • Patel, V. L., Arocha, J. F., & Zhang, J. (2012). Medical reasoning and thinking. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of thinking and reasoning (pp. 736–754). New York: Oxford University Press.

    Google Scholar 

  • Popper, K. (2005). The logic of scientific discovery. London: Routledge.

    Google Scholar 

  • Pridham, K. F., & Hansen, M. F. (1980). An observation methodology for the study of interactive clinical problem-solving behavior in primary care settings. Medical Care, 18(4), 360–375.

    Article  Google Scholar 

  • Resnick, I., & Shipley, T. F. (2013). Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts. Cognitive Processing, 14(2), 143–152. doi:10.1007/s10339-013-0548-2.

    Article  Google Scholar 

  • Richey, J. E., Phillips, J. S., Schunn, C. D., & Schneider, W. (2014). Is the link from working memory to analogy causal? No analogy improvements following working memory training gains. PLOS ONE, 9(9), e106616. http://doi.org/10.1371/journal.pone.0106616.

  • Richland, L. E., & McDonough, I. M. (2010). Learning by analogy: discriminating between potential analogs. Contemporary Educational Psychology, 35(1), 28–43. doi:10.1016/j.cedpsych.2009.09.001.

    Article  Google Scholar 

  • Richland, L. E., & Simms, N. (2015). Analogy, higher order thinking, and education. WIREs Cognitive Science, 6(2), 177–192. doi:10.1002/wcs.1336.

    Article  Google Scholar 

  • Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 1128–1129. doi:10.1126/science.1142103.

    Article  Google Scholar 

  • Richland, L. E., Chan, T. K., Morrison, R. G., & Au, T. K. F. (2010). Young children’s analogical reasoning across cultures: similarities and differences. Journal of Experimental Child Psychology, 105(1–2), 146–153. http://doi.org/10.1016/j.jecp.2009.08.003.

  • Shrager, J., & Langley, P. (1990). Computational models of scientific discovery and theory formation. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. In R. V. Kail & R. V. Kail (Eds.), Advances in child development and behavior (Vol. 33, pp. 1–42). San Diego: Elsevier Academic Press.

    Google Scholar 

  • Sinatra, G. M., & Broughton, S. H. (2011). Bridging reading comprehension and conceptual change in science education: the promise of refutation text. Reading Research Quarterly, 46(4), 374–393.

    Google Scholar 

  • Smith, L. B. (1984). Young children’s understanding of attributes and dimensions: a comparison of conceptual and linguistic measures. Child Development, 55(2), 363–380. doi:10.2307/1129949.

    Article  Google Scholar 

  • Sorensen, R. A. (2003). A brief history of the paradox: philosophy and the labyrinths of the mind. New York: Oxford University Press.

    Google Scholar 

  • Sprenger, A. M., Atkins, S. M., Bolger, D. J., Harbison, J. I., Novick, J. M., Chrabaszcz, J. S., & Dougherty, M. R. (2013). Training working memory: limits of transfer. Intelligence, 41(5), 638–663. doi:10.1016/j.intell.2013.07.013.

    Article  Google Scholar 

  • Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning: the componential analysis of human abilities. Oxford, UK: Lawrence Erlbaum Stevenson.

    Google Scholar 

  • Sternberg, R. J. (2000). Handbook of intelligence. Cambridge University Press.

  • Sternberg, R. J., & Ketron, J. L. (1982). Selection and implementation of strategies in reasoning by analogy. Journal of Educational Psychology, 74(3), 399–413.

    Article  Google Scholar 

  • Thagard, P., & Croft, D. (1999). Scientific discovery and technological innovation: ulcers, dinosaur extinction, and the programming language Java. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 125–137). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Thibaut, J. P., & French, R. M. (2016). Analogical reasoning, control and executive functions: a developmental investigation with eye-tracking. Cognitive Development, 38, 10–26. doi:10.1016/j.cogdev.2015.12.002.

    Article  Google Scholar 

  • Thiry, H., Laursen, S. L., & Hunter, A. B. (2011). What experiences help students become scientists? A comparative study of research and other sources of personal and professional gains for STEM undergraduates. The Journal of Higher Education, 82(4), 357–388.

    Article  Google Scholar 

  • Trey, L., & Khan, S. (2008). How science students can learn about unobservable phenomena using computer-based analogies. Computers and Education, 51(2), 519–529. doi:10.1016/j.compedu.2007.05.019.

    Article  Google Scholar 

  • Trickett, S. B., Trafton, J. G., & Schunn, C. D. (2009). How do scientists respond to anomalies? Different strategies used in basic and applied science. Topics in Cognitive Science, 1, 711–729. doi:10.1111/j.1756-8765.2009.01036.x.

    Article  Google Scholar 

  • Tweney, R. D., Doherty, M. E., & Mynatt, C. R. (1981). On scientific thinking. New York: Columbia University Press.

    Google Scholar 

  • Vendetti, M. S., Wu, A., Rowshanshad, E., Knowlton, B. J., & Holyoak, K. J. (2014). When reasoning modifies memory: schematic assimilation triggered by analogical mapping. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(4), 1172–1180. doi:10.1037/a0036350.

    Article  Google Scholar 

  • Vendetti, M. S., Matlen, B. J., Richland, L. E., & Bunge, S. A. (2015). Analogical reasoning in the classroom: insights from cognitive science. Mind, Brain, and Education, 9(2), 100–106. doi:10.1111/mbe.12080.

    Article  Google Scholar 

  • Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M., Thomas, C. R., & Miller, B. L. (1999). A system for relational reasoning in human pre-frontal cortex. Psychological Science, 10, 119–125.

    Article  Google Scholar 

  • Waltz, J. A., Lau, A., Grewal, S. K., & Holyoak, K. J. (2000). The role of working memory in analogical mapping. Memory & Cognition, 28, 1205–1212.

    Article  Google Scholar 

  • Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20(3), 273–281. doi:10.1080/14640746808400161.

    Article  Google Scholar 

  • Wertheimer, M. (1945). Productive thinking. Oxford, England: Harper.

    Google Scholar 

  • Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A., & Honda, M. (2000). Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173–197.

    Article  Google Scholar 

  • White, C. S., & Alexander, P. A. (1984). Teaching analogical reasoning processes. Reading Research and Instruction, 24(1), 38–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Dumas.

Ethics declarations

Conflict of Interest

The author declares no conflicts of interest.

Additional information

Correspondence concerning this article should be addressed to Denis Dumas, Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742-1131. Email: ddumas@umd.edu. Beginning in August, 2016, Dumas will be affiliated with the Department of Human Development and Psychoeducational Studies at Howard University, 2441 4th St. NW, Washington, DC 20059.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumas, D. Relational Reasoning in Science, Medicine, and Engineering. Educ Psychol Rev 29, 73–95 (2017). https://doi.org/10.1007/s10648-016-9370-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-016-9370-6

Keywords

Navigation