Advertisement

Educational Psychology Review

, Volume 29, Issue 4, pp 717–761 | Cite as

Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning

Review Article

Abstract

Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students’ learning of content knowledge, compared to text-only. But should students learn with a single type of visual representation or with multiple different types of visual representations? This article addresses this question from the perspective of the representation dilemma, namely that students often learn content they do not yet understand from representations they do not yet understand. To benefit from visual representations, students therefore need representational competencies, that is, knowledge about how visual representations depict information about the content. This article reviews literature on representational competencies involved in students’ learning of content knowledge. Building on this review, this article analyzes how the number of visual representations affects the role these representational competencies play during students’ learning of content knowledge. To this end, the article compares two common scenarios: text plus a single type of visual representations (T+SV) and text plus multiple types of visual representations (T+MV). The comparison yields seven hypotheses that describe under which conditions T+MV scenarios are more effective than T+SV scenarios. Finally, the article reviews empirical evidence for each hypothesis and discusses open questions about the representation dilemma.

Keywords

Multiple external representations Visualizations Conceptual and perceptual knowledge Sense-making processes Inductive learning processes 

References

  1. Acevedo Nistal, A., Van Dooren, W., & Verschaffel, L. (2013). Students’ reported justifications for their representational choices in linear function problems: an interview study. Educational Studies, 39(1), 104–117. doi: 10.1080/03055698.2012.674636.CrossRefGoogle Scholar
  2. Acevedo Nistal, A., Van Dooren, W., & Verschaffel, L. (2015). Improving students’ representational flexibility in linear-function problems: an intervention. Educational Psychology, 34(6), 763–786. doi: 10.1080/01443410.2013.785064.CrossRefGoogle Scholar
  3. Ackerman, P. L. (2003). Cognitive ability and non-ability trait determinants of expertise. Educational Researcher, 32(8), 15–20. doi: 10.3102/0013189X032008015.CrossRefGoogle Scholar
  4. Ainsworth, S. (1999). Designing effective multi-representational learning environments (Technical Report 58). University of Nottingham: ESRC Centre for Research in Development, Instruction & Training Department of Psychology. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.422.8804&rep=rep1&type=pdf.Google Scholar
  5. Ainsworth, S. (2006). DeFT: a conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. doi: 10.1016/j.learninstruc.2006.03.001.CrossRefGoogle Scholar
  6. Ainsworth, S. (2008a). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner, & A. Nakama (Eds.), Visualization: theory and practice in science education (pp. 191–208). Amsterdam, The Netherlands: Springer.CrossRefGoogle Scholar
  7. Ainsworth, S. (2008b). How do animations influence learning? In D. Robinson & G. Schraw (Eds.), Current perspectives on cognition, learning, and iinstruction: recent innovations in educational technology that facilitate student learning (pp. 37–67). Charlotte, NC: Information Age Publishing Inc.Google Scholar
  8. Ainsworth, S. (2014). The multiple representation principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 464–486). New York, NY: Cambridge University Press. doi: 10.1007/978-1-4020-5267-5_9.CrossRefGoogle Scholar
  9. Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. Journal of the Learning Sciences, 11(1), 25–61. doi: 10.1207/S15327809JLS1101_2.CrossRefGoogle Scholar
  10. Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27–49. doi: 10.1002/tea.20265.CrossRefGoogle Scholar
  11. Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241. doi: 10.1023/A:1024312321077.CrossRefGoogle Scholar
  12. Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.CrossRefGoogle Scholar
  13. Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: 10.1146/annurev-psych-120710-100422.CrossRefGoogle Scholar
  14. Baetge, I., & Seufert, T. (2010). Effects of support for coherence formation in computer science education. Ulm, Germany: Paper presented at EARLI SIG 6/7: Instructional Design and Learning and Instruction with Computers.Google Scholar
  15. Baker, R. S., Corbett, A. T., & Koedinger, K. R. (2002). The Resilience of Overgeneralization of Knowledge About Data Representations. New Orleans, LA: Paper presented at the American Educational Research Association Conference.Google Scholar
  16. Bandura, A. (2001). Social cognitive theory: an agentic perspective. Annual Review of Psychology, 52(1), 1–26. doi: 10.1146/annurev.psych.52.1.1.CrossRefGoogle Scholar
  17. Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Research, 101(1), 70–87. doi: 10.1037/a0013247.Google Scholar
  18. Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 287–296). New York: Cambridge University Press.CrossRefGoogle Scholar
  19. Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple representations. Computers in Human Behavior, 22(1), 27–42. doi: 10.1016/j.chb.2005.01.005.CrossRefGoogle Scholar
  20. Bodner, G. M., & Domin, D. S. (2000). Mental models: the role of representations in problem solving in chemistry. University Chemistry Education, 4(1), 24–30.Google Scholar
  21. Bowen, C. W. (1990). Representational systems used by graduate students while problem solving in organic synthesis. Journal of Research in Science Teaching, 27(4), 351–370.CrossRefGoogle Scholar
  22. Braden, R. A., & Hortin, J. A. (1981). Identifying the theoretical foundations of visual literacy. Lexington, KY: Paper presented at the Annual Conference on Visual Literacy.Google Scholar
  23. Braithwaite, D. W., & Goldstone, R. L. (2013). Integrating formal and grounded representations in combinatorics learning. Journal of Educational Psychology, 105(3), 666–682. doi: 10.1037/a0032095.CrossRefGoogle Scholar
  24. Carmichael, A., Larson, A., Gire, E., Loschky, L., & Rebello, N. S. (2010). How does visual attention differ between experts and novices on physics problems? Proceedings of the American Institute of Physics (AIP) Conference, 1289, 93. doi: 10.1063/1.3515257.Google Scholar
  25. Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14(1), 5–26. doi: 10.1023/A:1013176309260.CrossRefGoogle Scholar
  26. Carpenter, T. P. (1971). The performance of first grade students on a nonstandard set of measurement tasks (Report WURDCCL-TR-211). Washington, DC: National Center for Educational Research and Development. Retrieved from http://files.eric.ed.gov/fulltext/ED070662.pdf.Google Scholar
  27. Carraher, D., & Schliemann, A. (2002). The transfer dilemma. The Journal of the Learning Sciences, 11(1), 1–24. doi: 10.1207/S15327809JLS1101_1.CrossRefGoogle Scholar
  28. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332. doi: 10.1207/s1532690xci0804_2.CrossRefGoogle Scholar
  29. Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ understandings of fractions. Educational Studies in Mathematics, 64(3), 293–316. doi: 10.1007/s10649-006-9036-2.CrossRefGoogle Scholar
  30. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81. doi: 10.1016/0010-0285(73)90004-2.CrossRefGoogle Scholar
  31. Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: how students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182. doi: 10.1016/0364-0213(89)90002-5.CrossRefGoogle Scholar
  32. Chi, M. T. H., de Leeuw, N., Chiu, M. H., & Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18(3), 439–477. doi: 10.1016/0364-0213(94)90016-7.Google Scholar
  33. Chi, M. T. H., Feltovitch, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. doi: 10.1207/s15516709cog0502_2.CrossRefGoogle Scholar
  34. Cobb, P. (1995). Cultural tools and mathematical learning: a case study. Journal for Research in Mathematics Education, 26(4), 362–385. doi: 10.2307/749480.CrossRefGoogle Scholar
  35. Cobb, P., & McClain, K. (2006). Guiding inquiry-based math learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (1st ed., pp. 171–186). New York, NY: Cambridge University Press.Google Scholar
  36. Coll, R. K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464–486. doi: 10.1002/tea.10085.CrossRefGoogle Scholar
  37. Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: essays in honour of Robert Glaser. Hillsdale, NJ: Erlbaum.Google Scholar
  38. Collins, A., & Kapur, M. (2014). Cognitive apprenticeship. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 109–127). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  39. Confrey, J., & Maloney, A. (2010). The construction, refinement, and early validation of the equipartitioning learning trajectory. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Proceedings of the 9th International Conference of the Learning Sciences (Vol. 1, pp. 968–973). Chicago, IL: International Society of the Learning Sciences.Google Scholar
  40. Cook, M., Wiebe, E. N., & Carter, G. (2007). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848–867. doi: 10.1002/sce.20262.CrossRefGoogle Scholar
  41. Cooper, M. M., Underwood, S. M., & Hilley, C. Z. (2012). Development and validation of the implicit information from lewis structures instrument (IILSI): do students connect structures with properties? Chemistry Education Research and Practice, 13(3), 195–200. doi: 10.1039/C2RP00010E.CrossRefGoogle Scholar
  42. Cope, A. C., Bezemer, J., Kneebone, R., & Lingard, L. (2015). ‘You see?’ Teaching and learning how to interpret visual cues during surgery. Medical Education, 49(11), 1103–1116. doi: 10.1111/medu.12780.CrossRefGoogle Scholar
  43. Corradi, D., Elen, J., & Clareboug, G. (2012). Understanding and enhancing the use of multiple external representations in chemistry education. Journal of Science Education and Technology, 21(6), 780–795. doi: 10.1007/s10956-012-9366-z.CrossRefGoogle Scholar
  44. Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9(4), 343–363. doi: 10.1016/S0959-4752(98)00051-6.CrossRefGoogle Scholar
  45. Cox, R., & Brna, P. (1995). Supporting the use of external representations in problem solving: the need for flexible learning environments. Journal of Artificial Intelligence in Education, 6, 239–302.Google Scholar
  46. Cramer, K., & Henry, A. (2002). Using manipulative models to build number sense for addition of fractions. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  47. Cramer, K., & Wyberg, T. (2009). Efficacy of different concrete models for teaching the part-whole construct for fractions. Mathematical Thinking and Learning, 11(4), 226–257. doi: 10.1080/10986060903246479.CrossRefGoogle Scholar
  48. Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: diagrams. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 169–191). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  49. de Jong, T., Ainsworth, S., Dobson, M., Van der Meij, J., Levonen, J., Reimann, P., & Swaak, J. (1998). Acquiring knowledge in science and mathematics: the use of multiple representations in technology-based learning environments. In M. W. Van Someren, W. Reimers, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with multiple representations (pp. 9–41). Bingley, UK: Emerald Group Publishing Limited.Google Scholar
  50. de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. science. Science, 340(6130), 305–308. doi: 10.1126/science.1230579.CrossRefGoogle Scholar
  51. Deliyianni, E., Gagatsis, A., Elia, I., & Panaoura, A. (2015). Representational flexibility and problem-solving ability in fraction and decimal number addition: a structural model. International Journal of Science and Mathematics Education, 1-21. doi: 10.1007/s10763-015-9625-6
  52. DeLoache, J. S. (2000). Dual representation and young children’s use of scale models. Child Development, 71(2), 329–338. doi: 10.1111/1467-8624.00148.CrossRefGoogle Scholar
  53. DeLoache, J. S., & Marzolf, D. P. (1992). When a picture is not worth a thousand words: young children’s understanding of pictures and models. Cognitive Development, 7(3), 317–329. doi: 10.1016/0885-2014(92)90019-N.CrossRefGoogle Scholar
  54. diSessa, A. A., & Sherin, B. L. (2000). Meta-representation: an introduction. The Journal of Mathematical Behavior, 19(4), 385–398. doi: 10.1016/S0732-3123(01)00051-7.CrossRefGoogle Scholar
  55. Eastwood, M. L. (2013). Fastest fingers: a molecule-building game for teaching organic chemistry. Journal of Chemical Education, 90(8), 1038–1041. doi: 10.1021/ed3004462.CrossRefGoogle Scholar
  56. Egan, M. H., & McDonald, C. (2014). Program visualization and explanation for novice c programmers. In J. Whalley & D. D’Souza (Eds.), Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014) (Vol. 148, pp. 51–57). Darlinghurst, Australia: Australian Computer Society, Inc.Google Scholar
  57. Eilam, B. (2013). Possible constraints of visualization in biology: challenges in learning with multiple representations. In D. F. Treagust & C.-Y. Tsui (Eds.), Multiple representations in biological education (pp. 55–73). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  58. Eilam, B., & Ben-Peretz, M. (2012). Teaching, learning, and visual literacy: the dual role of visual representation. Cambridge University Press.Google Scholar
  59. Eitel, A., Scheiter, K., & Schüler, A. (2013). How inspecting a picture affects processing of text. Applied Cognitive Psychology, 28, 48–63. doi: 10.1002/acp.2922.Google Scholar
  60. Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, 21(6), 521–544. doi: 10.1007/BF00315943.CrossRefGoogle Scholar
  61. Even, R. (1998). Factors involved in linking representations of functions. The Journal of Mathamtical Behavior, 17(1), 105–121. doi: 10.1016/S0732-3123(99)80063-7.CrossRefGoogle Scholar
  62. Fiorella, L., & Mayer, R. E. (2015). Eight ways to promote generative learning. Educational Psychology Review, 1-25. doi:  10.1007/s10648-015-9348-9
  63. Furio, C., Calatayud, M. L., Barcenas, S. L., & Padilla, O. M. (2000). Functional fixedness and function reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84(5), 545–565. doi: 10.1002/1098-237X(200009)84:5<545::AID-SCE1>3.0.CO;2-1.CrossRefGoogle Scholar
  64. Fuson, K. C., & Abrahamson, D. (2005). Understanding ratio and proportion as an example of the apprehending zone and conceptual-phase problem-solving models. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition. New York, NY: Psychology Press.Google Scholar
  65. Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: a systematic review. Educational Psychology Review, 26(1), 9–25. doi: 10.1007/s10648-014-9249-3.CrossRefGoogle Scholar
  66. Gabel, D. L., & Bunce, D. M. (1994). Research on problem solving: chemistry. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 301–326). New York, NY: MacMillan.Google Scholar
  67. Gagatsis, A., & Elia, I. (2004). The effects of different modes of representation on mathematical problem solving. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 447–454). Bergen: Bergen University College.Google Scholar
  68. Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011). Expertise differences in the comprehension of visualizations: a meta-analysis of eye-tracking research in professional domains. Educational Psychology Review, 23(4), 523–552. doi: 10.1007/s10648-011-9174-7.CrossRefGoogle Scholar
  69. Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7(2), 155–170. doi: 10.1207/s15516709cog0702_3.CrossRefGoogle Scholar
  70. Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: a general role for analogical encoding. Journal of Educational Psychology, 95(2), 393–405. doi: 10.1037/0022-0663.95.2.393.CrossRefGoogle Scholar
  71. Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45–56. doi: 10.1037/0003-066X.52.1.45.CrossRefGoogle Scholar
  72. Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Prentice Hall.Google Scholar
  73. Gibson, E. J. (2000). Perceptual learning in development: some basic concepts. Ecological Psychology, 12(4), 295–302. doi: 10.1207/S15326969ECO1204_04.CrossRefGoogle Scholar
  74. Gilbert, J. K. (2005). Visualization: a metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education (pp. 9–27). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  75. Gilbert, J. K. (2008). Visualization: an emergent field of practice and inquiry in science education. In J. K. Gilbert, M. Reiner & M. B. Nakhleh (Eds.), Visualization: theory and practice in science Education (Vol. 3, pp. 3-24): Springer.Google Scholar
  76. Gilbert, J. K., & Treagust, D. F. (2009). Towards a coherent model for macro, submicro and symbolic representations in chemical education. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 333–350). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  77. Goldstone, R. (1997). Perceptual learning. San Diego, CA: Academic Press.Google Scholar
  78. Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65(2), 231–262. doi: 10.1016/S0010-0277(97)00047-4.CrossRefGoogle Scholar
  79. Goldstone, R. L., Schyns, P. G., & Medin, D. L. (1997). Learning to bridge between perception and cognition. Psychology of Learning and Motivation, 36, 1–14. doi: 10.1016/S0079-7421(08)60279-0.CrossRefGoogle Scholar
  80. Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. Journal of the Learning Sciences, 14(1), 69–110. doi: 10.1207/s15327809jls1401_4.CrossRefGoogle Scholar
  81. Grawemeyer, B. (2006). Evaluation of ERST—an external representation selection tutor. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.), Diagrammatic representation and inference (pp. 154–167). Berlin/Heidelberg: Springer. doi: 10.1007/11783183_21.CrossRefGoogle Scholar
  82. Greene, J. A., Hutchison, L. A., Costa, L. J., & Crompton, H. (2012). Investigating how college students’ task definitions and plans relate to self-regulated learning processing and understanding of a complex science topic. Contemporary Educational Psychology, 37(4), 307–320. doi: 10.1016/j.cedpsych.2012.02.002.CrossRefGoogle Scholar
  83. Greeno, J. G., & Engeström, Y. (2014). Learning in activity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences. Cambridge, England: Cambridge University Press.Google Scholar
  84. Gruber, H., Graf, M., Mandl, H., Renkl, A., & Stark, R. (1995). Fostering Applicable Knowledge by Multiple Perspectives and Guided Problem Solving. Nijmergen, The Netherlands: Paper presented at the 6th Conference of the European Association for Research on Learning and Instruction.Google Scholar
  85. Gutwill, J. P., Frederiksen, J. R., & White, B. Y. (1999). Making their own connections: students’ understanding of multiple models in basic electricity. Cognition and Instruction, 17(3), 249–282. doi: 10.1207/S1532690XCI1703_2.CrossRefGoogle Scholar
  86. Harel, A. (2015). What is special about expertise? Visual expertise reveals the interactive nature of real-world object recognition. Neuropsychologia, 83, 88–99. doi: 10.1016/j.neuropsychologia.2015.06.004.CrossRefGoogle Scholar
  87. Hartman, H. J. (2002). Metacognition in learning and instruction. The Netherlands: Kluwer Academic Publisher.Google Scholar
  88. Hattie, J. (2012). Visible learning: a synthesis of over 800 meta-analyses relating to achievement. New York, NY: Routledge.Google Scholar
  89. Hecht, S. A., Vagi, K. J., Torgesen, J. K., Berch, D. B., & Mazzocco, M. M. M. (2007). Fraction skills and proportional reasoning. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 121–132). Baltimore, MD, US: Paul H Brookes Publishing.Google Scholar
  90. Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717–742. doi: 10.1006/jmla.1993.1036.CrossRefGoogle Scholar
  91. Hegarty, M., & Waller, D. A. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). New York, NY: Cambridge University Press. doi: 10.1017/CBO9780511610448.005.CrossRefGoogle Scholar
  92. Hill, M. J. (2015). Scientific representational fluency: defining, diagnosing, and developing. Sydney: Doctoral dissertation, University of Sydney. Retrieved from http://ses.library.usyd.edu.au/bitstream/2123/14194/1/hill_mj_thesis.pdf.Google Scholar
  93. Hinze, S. R., Rapp, D. N., Williamson, V. M., Shultz, M. J., Deslongchamps, G., & Williamson, K. C. (2013a). Beyond ball-and-stick: students’ processing of novel stem visualizations. Learning and Instruction, 26, 12–21. doi: 10.1016/j.learninstruc.2012.12.002.CrossRefGoogle Scholar
  94. Hinze, S. R., Williamson, V. M., Shultz, M. J., Williamson, K. C., Deslongchamps, G., & Rapp, D. N. (2013b). When do spatial abilities support student comprehension of stem visualizations? Cognitive Processing, 14(2), 129–142. doi: 10.1007/s10339-013-0539-3.CrossRefGoogle Scholar
  95. Holzinger, A., Kickmeier-Rust, M. D., & Albert, D. (2008). Dynamic media in computer science education; content complexity and learning performance: Is less more? Educational Technology & Society, 11(1), 279–290.Google Scholar
  96. Jacobs, J. E., & Paris, S. G. (1987). Children’s metacognition about reading: issues in definition, measurement, and instruction. Educational Psychologist, 22(3-4), 255–278. doi: 10.1080/00461520.1987.9653052.CrossRefGoogle Scholar
  97. Janvier, C., Girardon, C., & Morand, J. (1993). Mathematical symbols and representations. In P. S. Wilson (Ed.), Research ideas for the classroom: high school mathematics (pp. 79–102). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  98. Justi, R., & Gilbert, J. K. (2002). Models and modelling in chemical education. In O. de Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical education: towards research-based practice (pp. 47–68). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  99. Justi, R., Gilbert, J. K., & Ferreira, P. F. (2009). The application of a “model of modelling” to illustrate the importance of metavisualisation in respect of the three types of representation. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 285–307). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  100. Kalyuga, S., & Singh, A. M. (2015). Rethinking the boundaries of cognitive load theory in complex learning. Educational Psychology Review, 1-22. doi: 10.1007/s10648-015-9352-0
  101. Kellman, P. J., & Garrigan, P. B. (2009). Perceptual learning and human expertise. Physics of Life Reviews, 6(2), 53–84. doi: 10.1016/j.plrev.2008.12.001.CrossRefGoogle Scholar
  102. Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 558, pp. 117–165). New York, NY: Elsevier Academic Press.Google Scholar
  103. Kellman, P. J., Massey, C. M., Roth, Z., Burke, T., Zucker, J., Saw, A., & Wise, J. (2008). Perceptual learning and the technology of expertise: studies in fraction learning and algebra. Pragmatics & Cognition, 16(2), 356–405. doi: 10.1075/pc.16.2.07kel.CrossRefGoogle Scholar
  104. Kellman, P. J., Massey, C. M., & Son, J. Y. (2009). Perceptual learning modules in mathematics: enhancing students’ pattern recognition, structure extraction, and fluency. Topics in Cognitive Science, 2(2), 285–305. doi: 10.1111/j.1756-8765.2009.01053.x.CrossRefGoogle Scholar
  105. Kieren, T. E. (1993). Rational and fractional numbers: from quotient fields to recursive understanding. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: an integration of research. Hillsdale, NJ: Erlbaum.Google Scholar
  106. Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798. doi: 10.1111/j.1551-6709.2012.01245.x.CrossRefGoogle Scholar
  107. Kohl, P. B., & Finkelstein, N. D. (2008). Patterns of multiple representation use by experts and novices during physics problem solving. Physical Review Special Topics-Physics Education Research, 4, 010111. doi: 10.1103/PhysRevSTPER.4.010111.CrossRefGoogle Scholar
  108. Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences, 9(2), 105–143. doi: 10.1207/s15327809jls0902_1.CrossRefGoogle Scholar
  109. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968. doi: 10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U.CrossRefGoogle Scholar
  110. Kozma, R., & Russell, J. (2005). Students becoming chemists: developing representationl competence. In J. Gilbert (Ed.), Visualization in science education (pp. 121–145). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  111. Lamon, S. J. (Ed.). (1999). Teaching fractions and ratios for understanding. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  112. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science: A Multidisciplinary Journal, 11(1), 65–100. doi: 10.1111/j.1551-6708.1987.tb00863.x.CrossRefGoogle Scholar
  113. Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  114. Linenberger, K. J., & Bretz, S. L. (2012). Generating cognitive dissonance in student interviews through multiple representations. Chemistry Education Research and Practice, 13(3), 172–178. doi: 10.1039/C1RP90064A.CrossRefGoogle Scholar
  115. Linn, M. C., Eylon, B. S., Rafferty, A., & Vitale, J. M. (2015). Designing instruction to improve lifelong inquiry learning. Eurasia Journal of Mathematics, Science & Technology Education, 11(2), 217–225. doi: 10.12973/eurasia.2015.1317a.Google Scholar
  116. Magner, U. I., Schwonke, R., Aleven, V., Popescu, O., & Renkl, A. (2012). Triggering situational interest by decorative illustrations both fosters and hinders learning in computer-based learning environments. Learning and Instruction, 29, 141–152. doi: 10.1016/j.learninstruc.2012.07.002.CrossRefGoogle Scholar
  117. Mason, L., Pluchino, P., Tornatora, M. C., & Ariasi, N. (2013a). An eye-tracking study of learning from science text with concrete and abstract illustrations. The Journal of Experimental Education, 81(3), 356–384. doi: 10.1080/00220973.2012.727885.CrossRefGoogle Scholar
  118. Mason, L., Pluchino, P., & Tornatora, M. C. (2013b). Effects of picture labeling on science text processing and learning: evidence from eye movements. Reading Research Quarterly, 48(2), 199–214. doi: 10.1002/rrq.41.CrossRefGoogle Scholar
  119. Massey, C. M., Kellman, P. J., Roth, Z., & Burke, T. (2011). Perceptual learning and adaptive learning technology—developing new approaches to mathematics learning in the classroom. In N. L. Stein & S. W. Raudenbush (Eds.), Developmental cognitive science goes to school (pp. 235–249). New York, NY: Routledge.Google Scholar
  120. Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  121. Mayer, R. E. (2009). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 31–48). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  122. Mayer, R. E., & Feldon, D. (2014). Five common but questionable principles of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 97–116). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  123. Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82(4), 715–726. doi: 10.1037/0022-0663.82.4.715.CrossRefGoogle Scholar
  124. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52. doi: 10.1207/S15326985EP3801_6.CrossRefGoogle Scholar
  125. McElhaney, K. W., Chang, H. Y., Chiu, J. L., & Linn, M. C. (2015). Evidence for effective uses of dynamic visualisations in science curriculum materials. Studies in Science Education, 51(1), 49–85. doi: 10.1080/03057267.2014.984506.CrossRefGoogle Scholar
  126. McKendree, J., Small, C., Stenning, K., & Conlon, T. (2002). The role of representation in teaching and learning critical thinking. Educational Review, 54(1), 57–67. doi: 10.1080/00131910120110884.CrossRefGoogle Scholar
  127. McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22(6), 440–448. doi: 10.1016/j.learninstruc.2012.05.001.CrossRefGoogle Scholar
  128. McNeil, N., & Jarvin, L. (2007). When theories don’t add up: disentangling the manipulatives debate. Theory Into Practice, 46(4), 309–316. doi: 10.1080/00405840701593899.CrossRefGoogle Scholar
  129. McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19(2), 171–184. doi: 10.1016/j.learninstruc.2008.03.005.CrossRefGoogle Scholar
  130. Middendorf, J., & Pace, D. (2004). Decoding the disciplines: a model for helping students learn disciplinary ways of thinking. New Directions for Teaching and Learning, 98, 1–12. doi: 10.1002/tl.142.CrossRefGoogle Scholar
  131. Miura, I. T., & Yamagishi, J. M. (2002). The development of rational number sense. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  132. Moreira, R. F. (2013). A game for the early and rapid assimilation of organic nomenclature. Journal of Chemical Education, 90(8), 1035–1037. doi: 10.1021/ed300473r.CrossRefGoogle Scholar
  133. Moreno, R., Ozogul, G., & Reisslein, M. (2011). Teaching with concrete and abstract visual representations: effects on students’ problem solving, problem representations, and learning perceptions. Journal of Educational Psychology, 103(1), 32–47. doi: 10.1037/a0021995.CrossRefGoogle Scholar
  134. Moss, J. (2005). Pipes, tubes, and beakers: New approaches to teaching the rational-number system. In J. Brantsford & S. Donovan (Eds.), How people learn: a targeted report for teachers (pp. 309-349): National Academy Press.Google Scholar
  135. Moyer, P., Bolyard, J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8, 372–377.Google Scholar
  136. Nakiboglu, C. (2003). Instructional misconceptions of Turkish prospective chemistry teachers about atomic orbitals and hybridization. Chemistry Education Research and Practice, 4(2), 171–188. doi: 10.1039/B2RP90043B.CrossRefGoogle Scholar
  137. Nathan, M. J., Walkington, C. A., Srisurichan, R., & Alibali, M. W. (2011). Modal engagements in precollege engineering: tracking math and science concepts across symbols, sketches, software, silicone and wood. In Proceedings of the 118th American Society for Engineering Education. Vancouver, BC, Canada: American Society for Engineering Education.Google Scholar
  138. NCES. (2011). The Nation’s Report Card: Reading 2011. Washington, D.C.: National Center for Education Statistics.Google Scholar
  139. NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  140. NCTM. (2006). Curriculum focal points for prekindergarten through grade 8 mathematics: a quest for coherence. Reston, VA.Google Scholar
  141. NGSS (2013). Next Generataion Science Standards. Retrieved from http://www.nextgenscience.org/next-generation-science-standards
  142. Nicoll, G. (2001). A report of undergraduates’ bonding misconceptions. International Journal of Science Education, 23(7), 707–730. doi: 10.1080/09500690010025012.CrossRefGoogle Scholar
  143. Nistal, A. A., Van Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2010a). Representational flexibility in linear-function problems: a choice/no-choice study. In L. Verschaffel, E. De Corte, J. Elen, & T. D. Jong (Eds.), Representational flexibility in function problems (pp. 74–93). Oxon: Routledge.Google Scholar
  144. Nistal, A., Van Dooren, W., & Verschaffel, L. (2010b, August 26-28). Representational flexibility in linear function problems. Paper presented at the EARLI SIG 2: Comprehension of Text and Graphics Tracing the Mind: How do We Learn from Text and Graphics? Tübingen, GermanyGoogle Scholar
  145. Nistal, A., Van Dooren, W., & Verschaffel, L. (2011). What counts as a flexible representational choice? An evaluation of students’ representational choices to solve linear function problems. Instructional Science, 39(1), 1–21. doi: 10.1007/s11251-011-9199-9.CrossRefGoogle Scholar
  146. NMAP. (2008). Foundations for Success: Report of the National Mathematics Advisory Board Panel: U.S. Government Printing Office.Google Scholar
  147. Northedge, A. (2002). Organizing excursions into specialist discourse communities: a sociocultural account of university teaching. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford, UK: Blackwell Publishing Ltd.Google Scholar
  148. Northedge, A. (2003). Enabling participation in academic discourse. Teaching in Higher Education, 8(2), 169–180. doi: 10.1080/1356251032000052429.CrossRefGoogle Scholar
  149. Noss, R. R., Healy, L., & Hoyles, C. (1997). The construction of mathematical meanings: connecting the visual with the symbolic. Educational Studies in Mathematics, 33, 203–233. doi: 10.1023/A:1002943821419.CrossRefGoogle Scholar
  150. NRC. (1996). National science education standards. Washington, D.C.: National Academy Press.Google Scholar
  151. NRC (Ed.). (2002). Scientific research in education. Washington, DC: National Academy Pres.Google Scholar
  152. NRC. (2006). Learning to think spatially. Washington, D.C.: National Academies Press.Google Scholar
  153. NSES (2013). National Science Education Standards. Retrieved from http://www.nap.edu/catalog/4962.html
  154. OECD. (2010). PISA 2009 Results: Executive Summary. Washington, D.C.: US Government Printing Office.Google Scholar
  155. Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: an effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21–47. doi: 10.1002/sce.20463.CrossRefGoogle Scholar
  156. Paivio, A. (1986). Mental representations: a dual coding approach. Oxford, UK: Oxford University Press.Google Scholar
  157. Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding. Theory Into Practice, 40(2), 118–127. doi: 10.1207/s15430421tip4002_6.CrossRefGoogle Scholar
  158. Patel, Y., & Dexter, S. (2014). Using multiple representations to build conceptual understanding in science and mathematics. In M. Searson & M. Ochoa (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2014 (Vol. 2014, pp. 1304–1309). Chesapeake, VA: AACE.Google Scholar
  159. Peirce, C. S., Hartshorne, C., Weiss, P., & Burks, A. (1935). Collected Papers of Charles Sanders Peirce (Vol. I-VI). Cambridge, MA: Harvard University Press.Google Scholar
  160. Pintrich, P. R. (2000). Multiple goals, multiple pathways: the role of goal orientation in learning and achievement. Journal of Educational Psychology, 92(3), 544–555. doi: 10.1037/0022-0663.92.3.544.CrossRefGoogle Scholar
  161. Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of Educational Psychology, 95(4), 667–686.CrossRefGoogle Scholar
  162. Proctor, R. M. J., Baturo, A. R., & Cooper, T. J. (2002). Integrating concrete and virtual materials in an elementary mathematics classroom: a case study of success with fractions. In A. McDougall, J. Murnane, & D. Chambers (Eds.), Proceedings of the 7th World Conference on Computers in Education. Darlinghurst, Australia: Australian Computer Society, Inc.Google Scholar
  163. Rasch, T., & Schnotz, W. (2009). Interactive and non-interactive pictures in multimedia learning environments: effects on learning outcomes and learning efficiency. Learning and Instruction, 19(5), 411–422. doi: 10.1016/j.learninstruc.2009.02.008.CrossRefGoogle Scholar
  164. Rathmell, E. C., & Leutzinger, L. P. (1991). Number representations and relationships. The Arithmetic Teacher, 38(7), 20–23.Google Scholar
  165. Rau, M. A., & Wu, S. P. W. (2015). ITS support for conceptual and perceptual processes in learning with multiple graphical representations. In C. Conati, N. Heffernan, A. Mitrovic & M. F. Verdejo (Eds.), Artificial Intelligence in Education (pp. 398–407). Switzerland: Springer International Publishing.Google Scholar
  166. Rau, M. A., Aleven, V., Rummel, N., & Rohrbach, S. (2012). Sense making alone doesn’t do it: Fluency matters too! ITS support for robust learning with multiple representations. In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia (Eds.), Intelligent tutoring systems (Vol. 7315, pp. 174–184). Berlin/Heidelberg: Springer.Google Scholar
  167. Rau, M. A., Aleven, V., & Rummel, N. (2013a). Interleaved practice in multi-dimensional learning tasks: which dimension should we interleave? Learning and Instruction, 23, 98–114.Google Scholar
  168. Rau, M. A., Aleven, V., & Rummel, N. (2013b). Complementary effects of sense-making and fluencybuilding support for connection making: A matter of sequence? In H. C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Artificial Intelligence in Education (pp. 329–338). Berlin Heidelberg: Springer.Google Scholar
  169. Rau, M. A., Aleven, V., Rummel, N., & Pardos, Z. (2014). How should intelligent tutoring systems sequence multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial Intelligence in Education, 24(2), 125–161. doi: 10.1007/s40593-013-0011-7.
  170. Rau, M.A., Aleven, V., & Rummel, N. (2015a). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 30–46. doi: 10.1037/a0037211.
  171. Rau, M. A., Michaelis, J. E., & Fay, N. (2015b). Connection making between multiple graphical representations: A multi-methods approach for domain-specific grounding of an intelligent tutoring system for chemistry. Computers and Education, 82, 460–485. doi: 10.1016/j.compedu.2014.12.009.
  172. Reiser, B. J., & Tabak, I. (2014). Scaffolding. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 44–62). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  173. Richman, H. B., Gobet, F., Staszewski, J. J., & Simon, H. A. (1996). Perceptual and memory processes in the acquisition of expert performance: the EPAM model. In K. A. Ericsson (Ed.), The road to excellence? The acquisition of expert performance in the arts and sciences, sports and games (pp. 167–187). Mahwah, NJ: Erlbaum Associates.Google Scholar
  174. Roberts, M. J., Gilmore, D. J., & Wood, D. J. (1997). Individual differences and strategy selection in reasoning. British Journal of Psychology, 88(3), 473–492. doi: 10.1111/j.2044-8295.1997.tb02652.x.CrossRefGoogle Scholar
  175. Rocke, A. J. (2010). Image and reality: Kekulé, Kopp, and the scientific imagination. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
  176. Roschelle, J. (1992). Learning by collaborating: convergent conceptual change. Journal of the Learning Sciences, 2(3), 235–276. doi: 10.1207/s15327809jls0203_1.CrossRefGoogle Scholar
  177. Savec, V. F., Sajovic, I., & Grm, K. S. W. (2009). Action research to promote the formation of linkages by chemistry students between the macro, submicro, and symbolic representational levels. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 309–331). Netherlands: Springer.CrossRefGoogle Scholar
  178. Sawyer, R. K. (2006). Analyzing collaborative discourse. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (1st ed., pp. 187–204). New York, NY: Cambridge University Press.Google Scholar
  179. Scheiter, K., Schüler, A., Gerjets, P., Huk, T., & Hesse, F. W. (2014). Extending multimedia research: how do prerequisite knowledge and reading comprehension affect learning from text and pictures. Computers in Human Behavior, 31, 73–84. doi: 10.1016/j.chb.2013.09.022.CrossRefGoogle Scholar
  180. Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (1st ed., pp. 49–69). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  181. Schnotz, W. (2014). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 72–103). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  182. Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156. doi: 10.1016/S0959-4752(02)00017-8.CrossRefGoogle Scholar
  183. Schönborn, K. J., & Anderson, T. R. (2006). The importance of visual literacy in the education of biochemists. Biochemistry and Molecular Biology Education, 34(2), 94–102. doi: 10.1002/bmb.2006.49403402094.CrossRefGoogle Scholar
  184. Schönborn, K. J., & Bögeholz, S. (2013). Experts’ views on translation across multiple external representations in acquiring biological knowledge about ecology, genetics, and evolution. In D. F. Treagust & C.-Y. Tsui (Eds.), Multiple representations in biological education (pp. 111–128). Netherlands: Springer.CrossRefGoogle Scholar
  185. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237. doi: 10.1016/S0959-4752(02)00022-1.CrossRefGoogle Scholar
  186. Shanks, D. (2005). Implicit Learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage.Google Scholar
  187. Shusterman, G. P., & Shusterman, A. J. (1997). Teaching chemistry with electron density models. Journal of Chemical Education, 74(7), 771–776. doi: 10.1021/ed074p771.CrossRefGoogle Scholar
  188. Siegler, R. S., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., & Wray, J. (2010). Developing effective fractions instruction: a practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.Google Scholar
  189. Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219–234. doi: 10.1016/j.learninstruc.2007.01.012.CrossRefGoogle Scholar
  190. Strickland, A. M., Kraft, A., & Bhattacharyya, G. (2010). What happens when representations fail to represent? Graduate students’ mental models of organic chemistry diagrams. Chemistry Education Research and Practice, 11(4), 293–301. doi: 10.1039/C0RP90009E.CrossRefGoogle Scholar
  191. Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20(5), 597–608. doi: 10.1080/0950069980200507.CrossRefGoogle Scholar
  192. Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168. doi: 10.1039/C3RP00012E.CrossRefGoogle Scholar
  193. Talanquer, V. (2006). Commonsense chemistry: a model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811–817. doi: 10.1021/ed083p811.CrossRefGoogle Scholar
  194. Thompson, D. R., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick, G. Martin, & D. Schrifter (Eds.), Research companion to the principles and standards for school mathematics. Reston, VA: NCTM.Google Scholar
  195. Tobias, S. (1992). Disciplinary cultures and general education: what can we learn from our learners? Teaching Excellence, 4(6), 1–3.Google Scholar
  196. Tversky, B. (2011). Visualizing thought. Topics in Cognitive Science, 3(3), 499–535. doi: 10.1111/j.1756-8765.2010.01113.x.CrossRefGoogle Scholar
  197. Uesaka, Y., & Manalo, E. (2006). Active comparison as a means of promoting the development of abstract conditional knowledge and appropriate choice of diagrams in math word problem solving. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.), Diagrammatic representation and inference (pp. 181–195). Berlin/Heidelberg: Springer. doi: 10.1007/11783183_25.CrossRefGoogle Scholar
  198. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The Malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. doi: 10.1037/a0028446.CrossRefGoogle Scholar
  199. Uttal, D. H., & O’Doherty, K. (2008). Comprehending and learning from ‘visualizations’: a developmental perspective. In J. Gilbert (Ed.), Visualization: theory and practice in science education (pp. 53–72). Netherlands: Springer.CrossRefGoogle Scholar
  200. Van der Meij, J., & de Jong, T. (2011). The effects of directive self-explanation prompts to support active processing of multiple representations in a simulation-based learning environment. Journal of Computer Assisted Learning, 27(5), 411–423. doi: 10.1111/j.1365-2729.2011.00411.x.CrossRefGoogle Scholar
  201. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17(4), 285–325. doi: 10.1007/s10648-005-8136-3.CrossRefGoogle Scholar
  202. Vygotsky, L. S. (1978a). Internalization of higher psychological functions. In M. W. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.), Mind in society (pp. 52–57). Cambridge, MA: Harvard University Press.Google Scholar
  203. Vygotsky, L. S. (1978b). Interaction between learning and development. In M. W. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.), Mind in society (pp. 79–91). Cambridge, MA: Harvard University Press.Google Scholar
  204. Wertsch, J. V. (1997). Properties of mediated action. In J. V. Wertsch (Ed.), Mind as action (pp. 23–72). New York: Oxford University Press.CrossRefGoogle Scholar
  205. Wertsch, J. V., & Kazak, S. (2011). Saying more than you know in instructional settings. In T. Koschmann (Ed.), Theories of learning and studies of instructional practice (pp. 153–166). New York: Springer. doi: 10.1007/978-1-4419-7582-9_9.CrossRefGoogle Scholar
  206. White, T., & Pea, R. (2011). Distributed by design: on the promises and pitfalls of collaborative learning with multiple representations. Journal of the Learning Sciences, 20(3), 489–547. doi: 10.1080/10508406.2010.542700.CrossRefGoogle Scholar
  207. Winne, P. H., & Azevedo, R. (2014). Metacognition. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 63–87). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  208. Wise, J. A., Kubose, T., Chang, N., Russell, A., & Kellman, P. J. (2000). Perceptual learning modules in mathematics and science instruction. In P. Hoffman & D. Lemke (Eds.), Teaching and learning in a network world (pp. 169–176). Amsterdam, The Netherlands: IOS Press.Google Scholar
  209. Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492. doi: 10.1002/sce.10126.CrossRefGoogle Scholar
  210. Wylie, R., & Chi, M. T. (2014). The self-explanation principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 413–432). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  211. Yanik, H. B., Helding, B., & Flores, A. (2008). Teaching the concept of unit in measurement interpretation of rational numbers. Elementary Education Online, 7(3), 693–705.Google Scholar
  212. Yerushamly, M. (1991). Student perceptions of aspects of algebraic function using multiple representation software. Journal of Computer Assisted Learning, 7, 42–57. doi: 10.1111/j.1365-2729.1991.tb00223.x.CrossRefGoogle Scholar
  213. Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021–1035. doi: 10.1002/tea.20260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Educational PsychologyUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations