Educational Psychology Review

, Volume 27, Issue 3, pp 475–482 | Cite as

Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement

  • David MoreauEmail author


The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian dichotomy to a united approach of brain and body, particularly in line with recent advances in neuroscience. In this commentary, I discuss some of the possibilities offered by a blend of cognitive and motor demands in the context of cognitive enhancement. I then present novel empirical evidence and current trends of research that support this approach, and discuss examples of effective cognitive training interventions based on motor activities. Ultimately, the rationale for an early start to a successful and healthy education goes beyond the classroom—the goal is to educate the next generations about the benefits of sustained motor activities across the lifespan.


Cognitive enhancement Cognitive training Physical exercise BDNF Complex motor learning Embodied cognition Integrated interventions Education 


  1. Agostinho, S., Tindall-Ford, S., Ginns, P., Howard, S., Leahy, W., & Paas, F. (2015). Giving learning a helping hand: finger tracing of temperature graphs on an iPad. Educational Psychology Review (this issue).Google Scholar
  2. Archer, T., & Kostrzewa, R. M. (2012). Physical exercise alleviates ADHD symptoms: regional deficits and development trajectory. Neurotoxicity Research, 21(2), 195–209. doi: 10.1007/s12640-011-9260-0.CrossRefGoogle Scholar
  3. Bossaer, J. B., Gray, J. A., Miller, S. E., Enck, G., Gaddipati, V. C., & Enck, R. E. (2013). The use and misuse of prescription stimulants as “cognitive enhancers” by students at one academic health sciences center. Academic Medicine: Journal of the Association of American Medical Colleges, 88(7), 967–971. doi: 10.1097/ACM.0b013e318294fc7b.CrossRefGoogle Scholar
  4. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children. Neuron, 33(2), 301–311. doi: 10.1016/S0896-6273(01)00583-9.CrossRefGoogle Scholar
  5. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14(2), 125–130.CrossRefGoogle Scholar
  6. Curlik, D. M., & Shors, T. J. (2013). Training your brain: do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64, 506–514. doi: 10.1016/j.neuropharm.2012.07.027.CrossRefGoogle Scholar
  7. Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–668.CrossRefGoogle Scholar
  8. Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959–964. doi: 10.1126/science.1204529.CrossRefGoogle Scholar
  9. Dietz, P., Striegel, H., Franke, A. G., Lieb, K., Simon, P., & Ulrich, R. (2013). Randomized response estimates for the 12-month prevalence of cognitive-enhancing drug use in university students. Pharmacotherapy, 33(1), 44–50. doi: 10.1002/phar.1166.CrossRefGoogle Scholar
  10. Dimond, S. J., & Brouwers, E. Y. M. (1976). Increase in the power of human memory in normal man through the use of drugs. Psychopharmacology, 49(3), 307–309. doi: 10.1007/BF00426834.CrossRefGoogle Scholar
  11. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature, 427(6972), 311–312. doi: 10.1038/427311a.CrossRefGoogle Scholar
  12. Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., & Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–269. doi: 10.1016/S0092-8674(03)00035-7.CrossRefGoogle Scholar
  13. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331.CrossRefGoogle Scholar
  14. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–3022. doi: 10.1073/pnas.1015950108.CrossRefGoogle Scholar
  15. Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462–466. doi: 10.1016/j.cub.2013.01.044.CrossRefGoogle Scholar
  16. Ganley, K. J., Paterno, M. V., Miles, C., Stout, J., Brawner, L., Girolami, G., & Warren, M. (2011). Health-related fitness in children and adolescents. Pediatric Physical Therapy, 23(3), 208–220. doi: 10.1097/PEP.0b013e318227b3fc.CrossRefGoogle Scholar
  17. Gómez-Pinilla, F. (2008). Brain foods: the effects of nutrients on brain function. Nature Reviews Neuroscience, 9(7), 568–578. doi: 10.1038/nrn2421.CrossRefGoogle Scholar
  18. Goran, M. I., & Treuth, M. S. (2001). Energy expenditure, physical activity, and obesity in children. Pediatric Clinics of North America, 48(4), 931–953.CrossRefGoogle Scholar
  19. Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2(3), 260–265. doi: 10.1038/6365.CrossRefGoogle Scholar
  20. Green, C. T., Long, D. L., Green, D., Iosif, A.-M., Dixon, J. F., Miller, M. R., & Schweitzer, J. B. (2012). Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 9(3), 639–648. doi: 10.1007/s13311-012-0124-y.CrossRefGoogle Scholar
  21. Hegarty, M., & Waller, D. A. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge University Press.Google Scholar
  22. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. doi: 10.1038/nrn2298.CrossRefGoogle Scholar
  23. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proceedings of the National Academy of Sciences of the United States of America, 94(19), 10409–10414.CrossRefGoogle Scholar
  24. Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20(4), 265–276.Google Scholar
  25. Liu-Ambrose, T., Nagamatsu, L. S., Voss, M. W., Khan, K. M., & Handy, T. C. (2012). Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiology of Aging, 33(8), 1690–1698. doi: 10.1016/j.neurobiolaging.2011.05.010.CrossRefGoogle Scholar
  26. Mavilidi, M. F., Okely, A. D., Chandler, P., Cliff, D. P., & Paas, F. (2015). Effects of integrated physical exercises and gestures on preschool children’s foreign language vocabulary learning. Educational Psychology Review (this issue).Google Scholar
  27. Moreau, D. (2014a). Can brain training boost cognition? Nature, 515, 492.CrossRefGoogle Scholar
  28. Moreau, D. (2014b). Making sense of discrepancies in working memory training experiments: a Monte Carlo simulation. Frontiers in Systems Neuroscience, 8, 161. doi: 10.3389/fnsys.2014.00161.CrossRefGoogle Scholar
  29. Moreau, D., & Conway, A. R. A. (2013). Cognitive enhancement: a comparative review of computerized and athletic training programs. International Review of Sport and Exercise Psychology, 6(1), 155–183. doi: 10.1080/1750984X.2012.758763.CrossRefGoogle Scholar
  30. Moreau, D., & Conway, A. R. A. (2014). The case for an ecological approach to cognitive training. Trends in Cognitive Sciences, 18(7), 334–336. doi: 10.1016/j.tics.2014.03.009.CrossRefGoogle Scholar
  31. Moreau, D., Morrison, A. B., & Conway, A. R. A. (2015). An ecological approach to cognitive enhancement: complex motor training. Acta Psychologica, 157, 44–55. doi: 10.1016/j.actpsy.2015.02.007.CrossRefGoogle Scholar
  32. Paluska, S. A., & Schwenk, T. L. (2000). Physical activity and mental health. Sports Medicine, 29(3), 167–180. doi: 10.2165/00007256-200029030-00003.CrossRefGoogle Scholar
  33. Penedo, F. J., & Dahn, J. R. (2005). Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Current Opinion in Psychiatry, 18(2), 189–193.CrossRefGoogle Scholar
  34. Rafsanjani, N. (2011). In Manhattan, preschool interviews induce anxiety. Retrieved from
  35. Ragan, C. I., Bard, I., & Singh, I. (2013). What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology, 64, 588–595. doi: 10.1016/j.neuropharm.2012.06.016.CrossRefGoogle Scholar
  36. Ruiter, M., Loyens, S., & Paas, F. (2015). Watch your step children! Learning two-digit numbers through mirror-based observation of self-initiated body movements. Educational Psychology Review (this issue).Google Scholar
  37. Sarver, D. E., Rapport, M. D., Kofler, M. J., Raiker, J. S., & Friedman, L. M. (2015). Hyperactivity in attention-deficit/hyperactivity disorder (ADHD): impairing deficit or compensatory behavior? Journal of Abnormal Child Psychology. doi: 10.1007/s10802-015-0011-1.Google Scholar
  38. Shors, T. J., Anderson, M. L., Curlik, D. M., & Nokia, M. S. (2012). Use it or lose it: how neurogenesis keeps the brain fit for learning. Behavioural Brain Research, 227(2), 450–458. doi: 10.1016/j.bbr.2011.04.023.CrossRefGoogle Scholar
  39. Staiano, A. E., & Calvert, S. L. (2011). Exergames for physical education courses: physical, social, and cognitive benefits. Child Development Perspectives, 5(2), 93–98. doi: 10.1111/j.1750-8606.2011.00162.x.CrossRefGoogle Scholar
  40. Steiner, N. J., Frenette, E. C., Rene, K. M., Brennan, R. T., & Perrin, E. C. (2014). Neurofeedback and cognitive attention training for children with attention-deficit hyperactivity disorder in schools. Journal of Developmental and Behavioral Pediatrics, 35(1), 18–27. doi: 10.1097/DBP.0000000000000009.CrossRefGoogle Scholar
  41. Strong, W. B., Malina, R. M., Blimkie, C. J. R., Daniels, S. R., Dishman, R. K., Gutin, B., & Trudeau, F. (2005). Evidence based physical activity for school-age youth. The Journal of Pediatrics, 146(6), 732–737. doi: 10.1016/j.jpeds.2005.01.055.CrossRefGoogle Scholar
  42. Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Research Reviews, 59(1), 201–220. doi: 10.1016/j.brainresrev.2008.07.007.CrossRefGoogle Scholar
  43. Tomasi, D., Wang, G.-J., & Volkow, N. D. (2013). Energetic cost of brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13642–13647. doi: 10.1073/pnas.1303346110.CrossRefGoogle Scholar
  44. Tomporowski, P. D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review, 20(2), 111–131. doi: 10.1007/s10648-007-9057-0.CrossRefGoogle Scholar
  45. Tomporowski, P. D., Lambourne, K., & Okumura, M. S. (2011). Physical activity interventions and children’s mental function: an introduction and overview. Preventive Medicine, 52(Suppl 1), S3–S9. doi: 10.1016/j.ypmed.2011.01.028.CrossRefGoogle Scholar
  46. Toumpaniari, K., Loyens, S., Mavilidi, M. F., & Paas, F. (2015). Preschool children's foreign-language vocabulary learning by embodying words through physical activity and gesturing. Educational Psychology Review (this issue).Google Scholar
  47. Vallerand, R. J., Fortier, M. S., & Guay, F. (1997). Self-determination and persistence in a real-life setting: toward a motivational model of high school dropout. Journal of Personality and Social Psychology, 72(5), 1161–1176.CrossRefGoogle Scholar
  48. van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–270. doi: 10.1038/6368.CrossRefGoogle Scholar
  49. Weyandt, L. L., Marraccini, M. E., Gudmundsdottir, B. G., Zavras, B. M., Turcotte, K. D., Munro, B. A., & Amoroso, A. J. (2013). Misuse of prescription stimulants among college students: a review of the literature and implications for morphological and cognitive effects on brain functioning. Experimental and Clinical Psychopharmacology, 21(5), 385–407. doi: 10.1037/a0034013.CrossRefGoogle Scholar
  50. Wiesmann, M., & Ishai, A. (2011). Expertise reduces neural cost but does not modulate repetition suppression. Cognitive Neuroscience, 2(1), 57–65. doi: 10.1080/17588928.2010.525628.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Brain Research and School of PsychologyThe University of AucklandAucklandNew Zealand

Personalised recommendations